Technical Report M43

WATER'S LANDING HSR MODEL RIVER MILES 106.0-100.0

HYDRAULIC SEDIMENT RESPONSE MODEL INVESTIGATION

By

Ashley N. Cox Jasen L. Brown, P.E. Edward D. Brauer Edward H. Riiff Peter Russell, P.E. Robert D. Davinroy, P.E. Michael T. Rodgers, P.E.

U.S. ARMY CORPS OF ENGINEERS ST. LOUIS DISTRICT HYDROLOGIC AND HYDRAULICS BRANCH APPLIED RIVER ENGINEERING CENTER FOOT OF ARSENAL STREET ST. LOUIS, MISSOURI 63118

Sponsored by and Prepared for: U.S ARMY CORPS OF ENGINEERS – ST. LOUIS DISTRICT

In Cooperation With: ILLINOIS DEPARTMENT OF NATURAL RESOURCES, MISSOURI DEPARTMENT OF CONSERVATION, AND U.S. FISH AND WILDLIFE SERVICE

Final Report – JANUARY, 2009

Approved for Public Release; Distribution is Unlimited

INTRODUCTION

The U.S. Army Corps of Engineers, St. Louis District, conducted a sedimentation improvement study of the Water's Landing reach of the Middle Mississippi River between River Miles (RM) 106.0 and 100.0 near Chester, Illinois. This study reach was selected from the Stone Dike Alterations Project Report and funded by the Biological Opinion Program. The main objective of the study was to develop and evaluate design alternatives that would enhance the environmental diversity within the dike fields, in particular around River Miles 104.0 - 102.5. Along with the primary objective, a secondary goal was to alleviate repetitive channel maintenance dredging.

The study was conducted between May, 2008 and January, 2009 using a physical hydraulic sediment response (HSR) model at the St. Louis District Applied River Engineering Center in St. Louis, Missouri. The model study was performed by Mrs. Ashley Cox, Hydraulic Engineer, under direct supervision of Mr. Robert Davinroy, P.E., Chief, River Engineering Section for the St. Louis District. Other Corps of Engineers personnel included: Mr. Leonard Hopkins, P.E., Chief of Hydrologic and Hydraulic Branch, Ms. June Jeffries, P.E., Project Manager, Mr. Brian Johnson Natural Resource Planner, Plan Formulation Branch, Mr. Francis Walton from the Environmental Branch, Mr. Lance Engle, Dredging Project Manager. Personnel from other agencies involved in the study included: Mr. Matthew Mangan from the U.S. Fish and Wildlife Service, Mr. David Ostendorf and Ms. Janet Sternburg, from the Missouri Department of Conservation, and Mr. Butch Atwood from the Illinois Department of Natural Resources.

TABLE OF CONTENTS

INTRODUCTION	1
TABLE OF CONTENTS	2
BACKGROUND	3
1. PROBLEM DESCRIPTION	3
2. STUDY PURPOSE AND GOALS	3
3. Study Reach	3
4. STUDY REACH CHANNEL CHARACTERISTICS AND GENERAL TRENDS	4
HSR MODEL DESCRIPTION	5
1. Scales and Bed Materials	5
2. Appurtenances	5
HSR MODEL TESTS	6
1. MODEL CALIBRATION	6
A. HSR Model Operation	6
2. BASE TEST	6
3. DESIGN ALTERNATIVE TESTS	7
CONCLUSIONS	
1. EVALUATION AND SUMMARY OF THE MODEL TESTS	
2. EVALUATION AND SUMMARY OF THE MODEL TESTS	
3. INTERPRETATION OF MODEL TEST RESULTS	31
FOR MORE INFORMATION	32
APPENDIX OF PLATES	

BACKGROUND

1. Problem Description

The main problem in this reach is that there is not a lot of environmental diversity around the large sand bar on the right descending bank (RDB) around River Miles (RM) 104.0 – 102.5. Another problem is repetitive maintenance dredging from Mile 104.0 to Mile 102.0 on the Middle Mississippi River. This reach is not only dangerous and risky for navigation, but is also quite expensive to maintain a navigable channel. Just over the last 5 years (2003-2007), 1,601,300 cubic yards of material has been dredged at a cost of about \$2,344,000.

2. Study Purpose and Goals

The purpose of this model study was to evaluate various design alternatives with a goal of adding environmental diversity and if possible, alleviate sediment deposition which requires maintenance dredging. The goal of maintaining a safe and dependable navigation channel must be done while maintaining or improving environmental features in the reach (such as the area around chevron 103.5R and Rockwood Chute). Fish species flourish in deep pools, slow, shall channels, and around bar formations. This type of habitat can be cultivated by altering existing dikes, i.e. notching, increasing or decreasing length and/or height, or by adding new structures, i.e. dikes, chevrons, weirs, or by using a combination of alterations and new structures.

The objective of the Hydraulic Sediment Response (HSR) Model study was to determine a configuration of river training structures that will enhance the environmental features within the dike fields while reducing or eliminating sediment deposition in the navigation channel between Mississippi River Miles 104.0 and 102.5.

3. Study Reach

The study comprises a six mile stretch of the Middle Mississippi River, between Miles 106.0 and 100.0 near Chester, Illinois. Plate 1 is a location and vicinity map of the study reach. Counties located around the study reach are Randolph in Illinois and Perry in Missouri.

4. Study Reach Channel Characteristics and General Trends

Present and historic hydrographic surveys of the Mississippi River, in the HSR model study area, are shown on Plates 5-9. The plates show Range Line surveys from 2007, 2005, 1986-1987, 1982-1983, and 1939-1956.

The following bathymetric trends have remained relatively constant after comparison of the above mentioned hydrographic surveys:

River Miles	Description
105.8 – 104.5	The thalweg is located on the left descending bank (LDB) with depths
	between 20 and 30 feet below the Low Water Reference Plane (LWRP).
104.5 – 101.5	There is not an apparent thalweg. Depths range between 10 and 30 feet
	below the LWRP. Near mile 104.0 a depositional bar develops on the right
	descending bank (RDB). Repetitive channel dredging has occurred between
	mile 104.0 and 102.0
101.5 – 100.5	The thalweg crosses to the RDB with depths between 16 and 30 feet below
	the LWRP.
100.5 – 99.5	This is a crossing area between deep river bends. Depths range between 10
	and 20 feet below the LWRP. Near mile 100.0 a bar develops on the LDB.
	Repetitive channel dredging occurred between mile 100.0 and 99.0.

HSR MODEL DESCRIPTION

The Water's Landing Hydraulic Sediment Response (HSR) model encompasses Mississippi River miles 106.0-100.0. Allowing for entrance and exit conditions, the actual study reach was located between Mississippi River Miles 104.5 – 101.0.

1. Scales and Bed Materials

The model employed a horizontal scale of 1 inch = 500 feet, or 1:6000, and a vertical scale of 1 inch = 45 feet, or 1:540, for an 11.1 to 1 distortion ratio of linear scales. This distortion supplied the necessary forces required for the simulation of sediment transport conditions similar to those observed in the prototype. The bed material was granular plastic urea, Type II, with a specific gravity of 1.40.

2. Appurtenances

The HSR model insert was constructed according to the 2006 high-resolution aerial photography of the study reach. The insert was then mounted in a standard HSR model flume. The riverbanks of the model were constructed from dense polystyrene foam, and modified during calibration with clay and galvanized steel mesh. Rotational jacks located within the hydraulic flume controlled the slope of the model. The measured slope of the insert and flume was approximately 0.01 inch/inch. River training structures in the model were made of galvanized steel mesh.

Flow into the model was regulated by customized computer hardware and software interfaced with an electronic control valve and submersible pump. This interface was used to automatically control the flow of water and sediment into the model. Discharge was monitored by a magnetic flow meter interfaced with the customized computer software. The water plane was manually checked with a mechanical three-dimensional point digitizer. Resultant bed configurations were measured and recorded with a three-dimensional laser scanner.

HSR MODEL TESTS

1. Model Calibration

The calibration of the model involved the adjustment of water discharge, sediment volume, model slope, and entrance conditions of the model. These parameters were refined until the measured bed response of the model was similar to that of the prototype.

A. HSR Model Operation

In all model tests, a steady state flow was simulated in the channel. This served as the average design energy response of the river. Because of the constant variation experienced in the prototype, this steady state flow was used to theoretically analyze the ultimate expected sediment response. The flow was held steady at a constant flow rate of 2.6 Gallons per Minute (GPM) during model calibration and for all design alternative tests. An important factor during the modeling process is the establishment of an equilibrium condition of sediment transport. The high steady flow in the model simulated an average energy condition representative of the river's channel forming flow and sediment transport potential at bank full stage.

Note: There is a weir located near River Mile 103.3L that is not labeled on the plates. It is approximately 700 feet long and is angled upstream.

2. Base Test

Model calibration was achieved after favorable qualitative comparisons of the prototype surveys were made to several surveys of the model. The resultant bathymetry of this bed response served as the base test of the HSR model. Plate 10 shows the bed configuration of the HSR model base test.

Results of the HSR model base test bathymetry and a comparison to the 1987 through 2007 prototype surveys between Mile 106.0 and Mile 100.0 indicated the following trends: At Mile 105.5 through 104.5, both the model and the prototype surveys show the thalweg located along the LDB. The prototype's thalweg is deeper. Along the RDB a large depositional bar can be seen in both the model and prototype.

At Mile 104.5 to 102.0, the depositional bar grows from the RDB towards the LDB in both the prototype and model. The thalweg becomes shallower, but small scour holes appear around the ends of the river training structures. The scour holes are slightly more defined in the model.

Between miles 102.5 to 102.0, the transition of the thalweg from the LDB to the RDB can be seen. The crossing is deeper in the model than in the prototype.

At Mile 102.8, both the model and prototype surveys show the development of a large depositional bar along the LDB.

From Mile 102.0 to 101.5 the thalweg is located on the LDB, and is deeper in the model.

3. Design Alternative Tests

The testing process consists of installing alternative structure configurations in the model in an attempt to alter the model bathymetry and velocity distribution in a manner intended to alleviate scour and / or siltation. Evaluation of each alternative is accomplished through a qualitative comparison to the model base test bathymetry and model base test flow visualization.

Alternative 1:

Type of Structure	Miles	LDB or RDB	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Chevron	104.7	RDB	300 x 300	356.0
Install Chevron	104.4	RDB	300 x 300	356.0
Install Chevron	104.1	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 11)

Effect on RDB Sand Bar	Effect on Channel	
Milos 104 0-102 5	Crossing	Additional Comments
WIIIES 104.0-102.3	Mile 103.0-102.0	
No major change occurred from	The channel crossing	A deep scour hole was shown
104.0-103.0; from 103.0-102.5	widened, but remained	around the trail dike at mile 103.8
the sandbar was narrower.	relatively shallow.	LDB.

Alternative 2:

Type of Structure	Miles	LDB or RDB	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Trail Dike Extension	104.0	RDB	1350	356.0

Bathymetry Analysis (Plate 12)

Effect on DDD Cand Day	Effect on Channel		
	Crossing	Additional Comments	
Miles 104.0-102.5	Mile 103.0-102.0		
There was a slight reduction	No improvement.	No scour around new	
in the sand bar width.		structure.	

Alternative 3:

Type of Structure	Miles	LDB or RDB	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Chevron	104.0	RDB	300 x 300	356.0
Install Chevron	103.9	LDB	150 x 150	356.0
Install Chevron	103.8	RDB	300 x 300	356.0
Install Chevron	103.7	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 13)

Effect on PDP Sand Par	Effect on Channel	
Miles 104 0 102 E	Crossing	Additional Comments
Willes 104.0-102.5	Mile 103.0-102.0	
The chevrons moderately	The crossing appears to	The navigable channel had a
reduced the overall width of the	have slightly widened.	more consistent line of depth.
sand bar from RM 104.0-103.0.		
From RM 103.0-102.5 the bar		
width slightly narrowed.		

Alternative 4:

Type of Structure	Miles	LDB or RDE	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Chevron	104.0	RDB	300 x 300	356.0
Install Chevron	103.9	LDB	150 x 150	356.0
Install Chevron	103.8	RDB	300 x 300	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Install Chevron	103.5	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 14)

Effect on DDB Sand Bar	Effect on Channel	
	Crossing	Additional Comments
Miles 104.0-102.5	Mile 103.0-102.0	
The width of the upstream	The channel crossing was	The proposed chevron at 103.9
end of the sand bar was	slightly deepened and	LDB created a small sandbar
significantly narrower. The	slightly widened.	behind it, providing a diverse
width of the last half mile		habitat for wildlife.
stayed about the same.		

Alternative 5:

Type of Structure	Miles	LDB or RDB	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Chevron	103.8	RDB	300 x 300	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Install Dike	103.6	LDB	775	356.0
Install Chevron	103.5	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 15)

Effect on RDB Sand	Effect on Channel	
Bar	Crossing	Additional Comments
Miles 104.0-102.5	Mile 103.0-102.0	
The sand bar width did not	The channel width stayed the	The sand bar located around
change.	same, but slightly deepened.	mile 102.5 on the LDB showed
		signs of erosion.

Alternative 6:

Type of Structure	Miles	LDB or RDB	Dimensions in Feet	Structure Top Elevation NAD 1927 (ft)
Install Dike	104.1	LDB	338	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Install Chevron	103.6	RDB	300 x 300	356.0
Install Chevron	103.4	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 16)

Effect on PDR Sand Bar Mile	Effect on Channel	
	Crossing Mile 103.0	Additional Comments
104.0-102.5	102.0	
The sand bar width was	The channel width	A small sand bar is shown
significantly less from mile 104.0-	stayed the same, but	behind the proposed dike around
103.0, but remained unchanged	deepened.	mile 104.0. The sand bar located
from mile 103.0-102.5.		around mile 102.5 on the LDB
Throughout the stretch the		showed signs of erosion.
navigable channel had a more		
consistent line of depth.		

Alternative 7:

				Structure Top
Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Elevation
				NAD 1927 (ft)
Extend Existing Dike	104.4	RDB	150	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike	104.0	RDB	300	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike	103.5	RDB	300	356.0

Bathymetry Analysis (Plate 17)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0-102.0	Additional Comments
The sand bar width was	The channel width increased in	Scour holes were created
slightly narrower from mile	the northern part of the crossing	around existing dike 103.8L
104.0-103.0; the width of the	and slightly decreased around	and 103.4L. The width of the
sand bar was significantly	mile 102.2. The depth of the	sand bar along the LDB
narrower from mile 103.0-	crossing slightly increased.	started to increase around
102.5. The navigable		mile 102.1.
channel had a more		
consistent line of depth.		

Alternative 8:

				Structure Top
Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Elevation
				NAD 1927 (ft)
Install Chevron	104.0	RDB	300 x 300	356.0
Install Dike	104.0	LDB	300	356.0
Install Weir (angled upstream)	103.5	LDB	600	322.0
Install Chevron	103.5	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 18)

Effect on RDB Sand Bar Miles	Additional Commonto	
104.0-102.5	Mile 103.0-102.0	Additional Comments
The sand bar width was less	The crossing was deeper with	Some deposition was shown
throughout miles 104.0-103.0. The	a slightly wider navigable	behind the proposed dike at
width of the sand bar was slightly	channel.	104.0L.
narrower from mile 103.0-102.5.		
The navigable channel had a more		
consistent line of depth.		

Alternative 9:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Notch Existing Dike	104.7	RDB	Existing Notch width = 175' (Start notch 200' from LDB)	356.0
Install Notched Dike	104.0	LDB	775 Notch width = 175' (Start notch 375' from RDB)	356.0
Install Chevron	103.5	LDB	150 x 150	356.0

Bathymetry Analysis (Plate 19)

Effect on PDR Sand Bar Miles	Effect on Channel	
	Crossing Mile 103.0	Additional Comments
104.0-102.5	102.0	
The sand bar width was significantly less	The depth was only	A small sand bar was shown behind the
from mile 104.0-103.0 and the sand bar	slightly deeper.	proposed notched dike at 104.0L as well
became slightly narrower from 103.0 -		as the chevron at 103.55L (did not
102.5. The line of depth became more		create a problem). It did create some
consistent in the navigable channel.		slack water for diversity as well as push
		a majority of the water towards the
		navigation channel.

Alternative 10:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Notch Existing Dike	104.7	RDB LDB	Existing Notch width = 175' (Start 200' from LDB) 775 Notch width = 175' (Start 375' from RDB)	356.0 356.0
Install Chevron	103.5	RDB	150 x 150	356.0

Bathymetry Analysis (Plate 20)

Effect on RDB Sand Bar Miles 104.0-	Additional Commont	
102.5	Mile 103.0-102.0	Additional Comments
The sand bar width was significantly	The crossing width slightly	A small sand bar (shallow
decreased from mile 104.0-103.0, but the	decreased. The depth slightly	area) formed behind the
width of the sand bar slightly increased from	increased around mile 102.5,	proposed notched dike at
102.5-102.2. The navigable channel seemed	but stayed shallow around mile	104.0L. It did create some
to be broken up into three distinct areas.	102.0.	slack water for diversity.

Alternative 11:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Install Chevron Install Chevron	104.0 103.7	RDB RDB	300 x 300 300 x 300	356.0 356.0
Notch Existing Dike	103.1	LDB	Existing Notch width = 175' (Start notch 1,175' from RDB)	356.0

Bathymetry Analysis (Plate 21)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was only slightly	The crossing narrowed,	The notch in the existing dike 103.1L
less from mile 104.0-103.5. From mile	and it was only slightly	allowed too much flow in the side
103.0-102.5, the sand bar width	deeper.	channel. It appears that allowing too
slightly wider.		much flow would erode stable banks.

Alternative 12:

				Structure Top
Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Elevation
				NAD 1927 (ft)
Install Chevron	104.5	RDB	300 x 300	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Install Chevron	103.5	RDB	300 x 300	356.0
Install Chevron	103.4	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 22)

Effect on RDB Sand Ba	Effect on Channel	Additional Commonts
Miles 104.0-102.5	Crossing Mile 103.0-102.0	Additional Comments
The sand bar width was	The crossing widened but it	The navigable channel had a
narrower from mile 104.0-	became shallower.	more consistent line of depth
103.7, but remained the		from 103.8-103.2. A scour
same from mile 103.7-		hole was shown around dike
102.7. The sand bar width		103.6L.
was narrower from 102.7-		
102.5.		

Alternative 13:

				Structure Top
Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Elevation
				NAD 1927 (ft)
Extend Existing Dike	104.4	RDB	150	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Install Chevron	103.5	RDB	300 x 300	356.0
Install Weir (angled upstream)	103.5	LDB	600	322.0

Bathymetry Analysis (Plate 23)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0 102.0	Additional Comments
The sand bar width was slightly less from	The crossing slightly	A small scour hole is seen
mile 104.0-103.0, but the width did not	widened and	around the dike at mile
change from mile 103.0-102.5. The	deepened.	103.4L.
navigable channel had a more consistent		
line of depth.		

Alternative 14:

				Structure Top
Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Elevation
				NAD 1927 (ft)
Install Chevron	104.0	RDB	300 x 300	356.0
Install Chevron	103.9	LDB	150 x 150	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Install Chevron	103.1	RDB	300 x 300	356.0

Bathymetry Analysis (Plate 24)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was	The crossing widened and	The depositional area above the
narrower from mile 104.0-	deepened.	downstream angled dike 103.1L
102.5. The line of depth		was washed away (the area
became more consistent in		deepened).
the navigable channel.		

Alternative 15:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Extend Existing Dike	104.4	RDB	Extend Existing 150	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike	104.0	RDB	Extend Existing 300	356.0
and Notch			Notch width = 200' (Start notch 1,050' from RDB)	
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike	103.5	RDB	Extend Existing 300	356.0
and Notch			Notch width = 200' (Start notch 825' from RDB)	

Bathymetry Analysis (Plate 25)

Effect on RDB Sand Bar Mile 104.0-102.5	Effect on Channel Crossing Mile 103.0 102.0	Additional Comments
The sand bar width was narrower	The channel width	Small scour holes were created around existing
from mile 104.0-102.5. The	increased and the	dike 103.8L and 103.6L. There was a small
navigable channel had a more	depth of the crossing	channel formed by the proposed notches in the
consistent line of depth.	increased.	RDB depositional bar, allowing flow to reach the
		area near chevron 103.5R.

Alternative 16:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Install Chevron	104.0	PDP	200 x 200	256.0
Extend Existing Dike and Notch	104.0	КDВ	Extend the RDB leg 375'	336.0
Install Chevron		RDB	Extend Existing 300 at 130° angle Notch width = 200' (Start notch 1,050' from RDB)	356.0
Notch Existing Dike	103.7	RDB	300 x 300	356.0
	103.5	RDB	Notch width = 200' (Start notch 825' from RDB)	356.0

Bathymetry Analysis (Plate 26)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0 102.0	Additional Comments
The sand bar width was slightly	The channel width	Small scour holes were created around existing
narrower from mile 104.0-102.5.	increased and the	dike 103.8L and 103.6L. There was a small
The navigable channel had a more	depth of the crossing	channel formed by the proposed notches in the
consistent line of depth.	increased.	RDB depositional bar, allowing flow to reach
		the area near chevron 103.5R. (The secondary
		channel was not as defined as in alternative
		15).

Alternative 17:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation
Remove Existing Dike	104 4	RDB	Remove	-
Install Chevron	104.4	RDB	300 x 300	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0

Bathymetry Analysis (Plate 27)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0 102.0	Additional Comments
The sand bar width was narrower	The channel width	Small scour holes were created around existing
from mile 104.0-102.5. The	increased and the	dike 103.8L and 103.6L. There was a small
navigable channel had a more	depth of the crossing	channel formed by the proposed notches in the
consistent line of depth.	increased.	RDB depositional bar, allowing flow to reach
		the area near chevron 103.5R. However, the
		flow does not appear to have increased when
		compared with Alternative 15.

Alternative 18:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft Elevation NAD 1927	
Remove Existing Dike	104.4	RDB	Remove	-
Install Chevron	104.4	RDB	300 x 300	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0
Transfer Existing Chevron	103.5	RDB	Transfer Existing Chevron 300' away from RDB	356.0

Bathymetry Analysis (Plate 28)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was narrower	The depth increased	The navigation channel near RM 104.0 did not
from mile 104.0-102.5. The	and the channel width	seem to improve (in depth). Small scour holes
navigable channel had a more	of the crossing	were created around existing dike 103.8L,
consistent line of depth.	increased.	103.6L, and 103.5L. There was a small channel
		formed by the proposed notches in the RDB
		depositional bar, allowing flow to reach the area
		near chevron 103.5R. The flow from the small
		side channel seemed to reach Chevron 103.5R
		better than in Alternatives 15 or 16.

Alternative 19:

Type of Structure	Miles	LDB or	Dimensions in Ft	Structure Top Elevation
		NDD		NAD 1927 (ft)
Extend Existing Dike	104.4	RDB	Extend Existing 150	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0
Transfer Existing Chevron	103.5	RDB	Transfer Existing Chevron 300' away from RDB	356.0

Bathymetry Analysis (Plate 29)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments	
The sand bar width was narrower	The depth and the width	Small scour holes were created around existing	
from mile 104.0-102.5. The	of the channel increased.	dike 103.8L and 103.6L. There was a small	
navigable channel had a more		channel formed, allowing flow to reach chevron	
consistent line of depth.		103.5R. The relocation of the existing chevron	
		allows more flow to reach it, increasing	
		environmental diversity.	

Alternative 20:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft Elevat NAD 192	
Remove Existing Dike Install Chevron Install Chevron	104.4 104.4	RDB RDB	Remove 300 x 300 (1,200 ft away from LDB)	- 356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0
Transfer Existing Chevron	103.5	RDB	Transfer Existing Chevron 300' away from RDB	356.0

Bathymetry Analysis (Plate 29)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was narrower	The depth and the width	A small scour hole was created around existing
from mile 104.0-102.5. The	of the channel increased.	dike 103.8L. By placing chevron 104.4R closer
navigable channel had a more		to the navigation channel, more flow was
consistent line of depth.		diverted towards the notched dikes. There was
		a small channel formed, allowing flow to reach
		chevron 103.5R. The relocation of the existing
		chevron allows more flow to reach it, increasing
		environmental diversity.

Alternative 21:

				Structure Top
Type of Structure	Miles		Dimensions in Ft	Elevation
		RDB		NAD 1927 (ft)
Remove Existing Dike	104.4	RDB	Remove	-
Install Chevron	104.4	RDB	300 x 300 (1,200 ft away from LDB)	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0
Transfer Existing Chevron	103.5	RDB	Transfer Existing Chevron 450' away from RDB	356.0

Bathymetry Analysis (Plate 29)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was narrower	The width of the channel	By placing chevron 104.4R closer to the
from mile 104.0-102.5. The navigable	and the depth increased.	navigation channel, more flow was diverted
channel had a more consistent line of		towards the notched dikes. There was a small
depth.		channel formed, allowing flow to reach chevron
		103.5R. The relocation of the existing chevron
		closer to the navigation channel allows more.

Alternative 22:

Type of Structure	Miles	LDB or RDB	Dimensions in Ft	Structure Top Elevation NAD 1927 (ft)
Remove Existing Dike	104.4	RDB	Remove	-
Install Chevron	104.4	RDB	300 x 300 (1,200 ft away from LDB)	356.0
Install Chevron	104.0	RDB	300 x 300	356.0
Extend Existing Dike and Notch	104.0	RDB	Extend Existing 300 Notch width = 200' (Start notch 1,050' from RDB)	356.0
Install Chevron	103.7	RDB	300 x 300	356.0
Extend Existing Dike and Notch	103.5	RDB	Extend Existing 300 Notch width = 200' (Start notch 825' from RDB)	356.0

Bathymetry Analysis (Plate 29)

Effect on RDB Sand Bar Miles 104.0-102.5	Effect on Channel Crossing Mile 103.0- 102.0	Additional Comments
The sand bar width was narrower	The width of the channel	By placing chevron 104.4R closer to the
from mile 104.0-102.5. The	and the depth increased.	navigation channel, more flow was diverted
navigable channel had a more		towards the notched dikes. There was a small
consistent line of depth.		channel formed by the proposed notches in the
		RDB depositional bar, allowing flow to reach
		chevron 103.5R. The relocation of the existing
		chevron closer to the navigation channel allows
		more.

CONCLUSIONS

1. Evaluation and Summary of the Model Tests

	Reduce RDB	Positive Impact/ Deepen the	Negative Impact on
Test	Sand Bar	Channel Crossing	LDB Sand Bar (Miles
	(Miles 104.0-102.5)	(Miles 103.0-102.0)	102.5-101.0)
Alternative 1			
Alternative 2	Х		
Alternative 3	Х		
Alternative 4	Х	Х	
Alternative 5		Х	
Alternative 6	Х	Х	Х
Alternative 7	Х	Х	
Alternative 8	Х	Х	
Alternative 9	Х		Х
Alternative 10	Х		
Alternative 11			
Alternative 12			
Alternative 13	Х	Х	
Alternative 14	Х	Х	Х
Alternative 15	Х	Х	
Alternative 16	Х	Х	
Alternative 17	Х	Х	
Alternative 18	Х	Х	
Alternative 19	Х	Х	
Alternative 20	Х	Х	
Alternative 21	Х	Х	
Alternative 22	Х	X	

In order to determine the best alternative, certain criteria were used to evaluate each possibility. The first condition was that the alternative had to sufficiently stop the encroachment of the sand bar into the navigation channel from mile 104.0-102.5. The second condition was that the navigable channel in the crossing from mile 103.0-102.0 was enhanced in both depth and width. Lastly, the sand bar along the LDB

Water's Landing HSR Model Report LDB was to remain unaltered or only slightly modified; this condition took into account any negative impacts the alternative may have had on the sand bar from mile 102.5-101.0. An alternative was considered successful if it met all the conditions and continued to supply sufficient flow in the area around the chevron located at 103.5R, while creating sufficient environmental diversity around the RDB sand bar. Although some alternatives did meet the criterion and were considered successful, they were not recommended because they would involve structures infringing too far upon the navigation channel, there was inadequate flow to the area surrounding chevron 103.5R, or sufficient depth for construction of underwater structures was not available.

2. Recommendations

Alternative 22 is recommended due to its ability to improve the environmental diversity of the reach, reduce the RDB sand bar from mile 104.0-102.5, enhance the crossing conditions from mile 103.0-102.0, and deepen the crossing while maintaining ample flow near chevron 103.5R. This alternative should alleviate the dredging problem between miles 104.0-102.0.

The recommended design includes the following:

- Remove existing Dike at 104.4R to island (approximately 705 ft)
- Construct a 300 ft x 300 ft Chevron to +18 ft LWRP at mile 104.4R
- Construct a 300 ft x 300 ft Chevron to +18 ft LWRP at mile 104.0R
- Extend Dike 104.0R 300 ft and then create a notch 200 ft wide, 10 ft deep, and 1,050 ft from the RDB to the edge of notch (1,150 ft from RDB on center)
- Construct a 300 ft x 300 ft Chevron to +18 ft LWRP at mile 103.7R
- Extend Dike 103.5R 300 ft and then create a notch 200 ft wide, 10 ft deep, and 825 ft from the RDB to the edge of notch (925 ft from RDB on center)

Additional considerations to the above model design are revetment behind dikes 103.2L and 102.2L where there is substantial erosion as well as revetment of the caving RDB from RM 102.1-101.9. Further considerations include revetment of the

head of Rockwood Chute Island, of the LDB in Rockwood Chute from mile 102.3 to Dike 101.1L, and of the RDB in Rockwood Chute from Dike 101.8L extending to Dike 101.1L. (There has been considerable erosion to these banks, as seen in the field photographs on Plates 3 and 4.)

3. Interpretation of Model Test Results

In the interpretation and evaluation of the model test results, it should be remembered that these results are qualitative in nature. Any hydraulic model, whether physical or numerical, is subject to biases introduced as a result of the inherent complexities that exist in the prototype. Anomalies in actual hydrographic events, such as prolonged periods of high or low flows are not reflected in these results, nor are complex physical phenomena, such as the existence of underlying rock formations or other non-erodible variables. Flood flows were not simulated in this study.

This model study was intended to serve as a tool for the river engineer to guide in assessing the general trends that could be expected to occur in the actual river from a variety of imposed design alternatives. Measures for the final design may be modified based upon engineering knowledge and experience, real estate and construction considerations, economic and environmental impacts, or any other special requirements.

FOR MORE INFORMATION

For more information about micro modeling or the Applied River Engineering Center, please contact Robert Davinroy, Ashley Cox, or Jasen Brown at:

> Applied River Engineering Center U.S. Army Corps of Engineers - St. Louis District Hydrologic and Hydraulics Branch Foot of Arsenal Street St. Louis, Missouri 63118

Phone: (314) 263-4714, (314) 263-8091, or (314) 263-4230 Fax: (314) 263-4166

> E-mail: <u>Ashley.N.Cox@mvs.usace.army.mil</u> <u>Robert.D.Davinroy@mvs.usace.army.mil</u>

Or you can visit us on the World Wide Web at:

http://www.mvs.usace.army.mil/eng-con/expertise/arec/welcome_page_2.html

APPENDIX OF PLATES

- 1. Location and Vicinity Map of the Study Reach
- 2. Oblique Aerial Photographs
- 3. Field Photographs
- 4. Field Photographs
- 5. 1939-1956 Hydrographic Survey
- 6. 1982-83 Hydrographic Survey
- 7. 1986-87 Hydrographic Survey
- 8. 2005 Hydrographic Survey
- 9. 2007 Hydrographic Survey
- 10. Model Base Test 1:27,000
- 11. Alternative 1 1: 27,000
- 12. Alternative 2 1:27,000
- 13. Alternative 3 1:27,000
- 14. Alternative 4 1:27,000
- 15. Alternative 5 1:27,000
- 16. Alternative 6 1:27,000
- 17. Alternative 7 1:27,000
- 18. Alternative 8 1:27,000
- 19. Alternative 9 1:27,000
- 20. Alternative 10 1:27,000
- 21. Alternative 11 1:27,000
- 22. Alternative 12 1:27,000
- 23. Alternative 13 1:27,000
- 24. Alternative 14 1:27,000
- 25. Alternative 15 1:27,000
- 26. Alternative 16 1:27,000
- 27. Alternative 17 1:27,000
- 28. Alternative 18 1:27,000
- 29. Alternative 19 1:27,000
- 30. Alternative 20 1:27,000

31. Alternative 21 - 1:27,00032. Alternative 22 - 1:27,000

US. ABMY ENGINEER DIVISION	A COX		31.481-11	2006
CODES OF ENGINEERS ST LOUE, MESOURI	ACOX	J. BROWN	I, PE.	E. BRAUER
MESESIPPIEIVEE BASIN When Ladie	A. COX R DAVIN ROY, FE.			
HS & Mole ! & ice : Miles 186.8-20.0	WATER:	A LANDING/P	LA TRO	FIE DATE 11/10/2008

RDB of Rockwood Chute (vegetation)

Minor erosion of RDB of Rockwood Chute (approximately RM 101.8-101.1)

Erosion of LDB of Rockwood Chute (approximately RM 102.3-101.1)

More erosion of LDB of Rockwood Chute (approximately RM 102.3-101.1)

NOTE: Chester, Illinois gage (RM 109.9): Stage = 28.68 ft / + 29.26 ft LWRP Cape Girardeau, Missouri gage (RM 52.1): Stage = 33.09 ft / + 27.81 ft LWRP

North bank of Rockwood Chute Island where significant erosion has occurred

North Bank of Rockwood Chute Island

SURVEY DATE:	CHECKED BY: E BRAUER	APPROVED: R DAVINROY, P.E.	PLOT DATE: 11/10/2008			
	REVIEWED BY: J BROWN, P.E.	8	SLANDING #LATES			
DESIGNED BY: A COX	DRAWN BY: A COX	SUBMITTED: A COX	FILE NAME: WATER			
U.S. ARMY ENGINEER DIVISION	CORPS OF ENGINEERS ST. LOUIS, MISSOURI	MISSISSIPPI RIVER BASIN Waters Landing	HSR Model - River Miles 106.0 – 100.0			
	WATERS LANDING Date Photographed: May 29, 2008					
	PLATE					
	4					

US. APMY ENGINEER DIVISION	ACOX		- 8	07/00/ 2000 SCAL		
ST LOUE, MESOURI	ACOX	J. BROW	I, PE.	E. BRAUER		
MES ESIPPIEIVEE BASIN Water Ladies	A COX		R DAVINROY, PE.			
HS & Molel & ite : Miks 106.0. 00.0	HI HH WA'TER:	LANDING/P	14783	10/2003		

US. ABMY ENGINEER DIVISION	A COX		1123	10/06/2008 Scan
CODES OF ENGINEERS ST LOVE, MESOURI	ACOX	J. BROWN	I, PE	E. BRAUER
MESESIPPIEIVEE BASIN When Ladies	A. COX R DAVINROY, PE.			'INROY, FE.
HS & Model Bie : Miks 106.0-100.0	WATER:	A LANDING/P	14783	11/10/2003

US. AEMY ENGINEER DIVISION	ACOA		07) II) 2000 SCAL		
ST LOUE, MESOURI	ACOX	J. BROWN	, P.E.	E. BRAUER	
MES ESIFFIEIVEE BASIN Vak 6 Ladier	A. COX R DAVINROY, F		INROY, FE.		
HS & Mole ! & ise : Miles 106.0-20.0	ни ни : Wa`t'e e:	LANDING/PL	6 11 23	на сан 11/10/2003	

US. ABMY ENGINEER DIVISION	A COX		11.3	09/15/2008 Scan		
CORPS OF ENGINEERS ST LOUE, MESOURI	ACOX	J. BROWN	, PE	E. BRAUER		
MESESIPPIEIVEE BASIN Vale e Ladier	A. COX		R DAVIN ROY, FE.			
HS & Mole ! & ise : Miles 106.0-20.0	HI HH WA'TE B:	S LANDING /PI	14783	10/2002 11/10/2002		

US. ADMY ENGINEER DIVISION	ACOA		1 3	10) 00) 2000 0 CM
ST LOUE, MESOURI	ACOX	J. BROWN	, P.E.	E. BRAUER
MES ESIPPIEIVEE BASIN Wake Ladig	A.COX	COX R DAVINROY, FE.		
HS & Mole & ie : Miks 106.0-100.0		LANDING/PL	61123	11/10/2003

US. AEMY ENGINEER DRISION	A COX		09/25/2008 Scan		
ST LOUE, MESOURI	ACOX	J. BROWN	, P.E.	E. BRAUER	
MESESIPPIEIVEE BASIN Water Lastie	A COX	F	R DAVIN ROY, FE.		
HS & Model & ice : Miks 106.0- 100.0	WATER:	LANDING/PL	61123	11/10/2003	

US. ARMY ENGINEER DIVISION	DN A COX		09/30/2008 Scan		
ST LOUE, MESOURI	ACOX	J. BROWN	, P.E.	E. BRAUER	
MES ESIPPIEIVEE BASIN When Ladies	A. COX R DAVIN ROY, FE.			INROY, FE.	
HS & Mole ! & ice : Miles 106.0-100.0	HID HIM WA'TE B:	LANDING/PL	2 YES	11/10/2003	

US. ARMY ENGINEER DIVISION	A COX			10/16/2008 Scan		
ST LOUE, MESOURI	ACOX	J. BROW	N, PE.	E. BRAUER		
MES ESIPPIEIVEE BASIN Wake Ludig	A. COX		R DAVIN ROY, PE.			
HS & Mole ! & ie : Miks 106.0-00.0	HI HH WA'TER:	a LANDING/	PLA'183	FIDE DATE 11/10/2003		

US. ARMY ENGINEER DIVISION	A COX		1113	10/20/2008 Scan		
CODES OF ENGINEERS ST LOUE, MESOURI	ACOX	J. BROW	I, PE	E. BRAUER		
MESESIPPIEIVEE FASIN When Ludin	A COX	ON R DAVINROY, PE.				
HS & Molel & ite : Miks 106.0. 00.0	HD HM WA'TER:	S LANDING/P	LA TRO	FIDE DATE 11/10/2003		

US. ARMY ENGINEER DIVISION	A COX		10/28/2008 Scan		
CODES OF ENGINEERS ST LOUE, MESOURI	ACOX	J. BROWN	PE.	E. BRAUER	
MES ESIPPIEIVEE BASIN Water Ladies	A COX	R	R DAVIN ROY, FE.		
HS & Mole ! & ice : Miks 106.0-100.0	HD HM WA'TER:	A LANDING/PLA	-	10/2003	

US. ARMY ENGINEER DIVISION	A COX		11/04/2008 Scan		
ST LOUE, MESOURI	ACOX	J. BROWN	, PE	E. BRAUER	
MESESIPPIEIVEE BASIN When Lastin	A. COX		R DAVINROY, PE.		
HS & Molel & ite : Miks 106.0. 00.0	HID HIM WA'TER:	LANDING/PI	14 YES	11/10/2002	

US. ARMY ENGINEER DIVISION CORFS OF ENGINEERS ST LOUE, MESOURI	A COX		12/01/2008 Scan		
	ACOX	J. BROWN	I, PE	E. BRAUER	
MES ESTPPTEIVER FASIN Vakus Lauling HS P Mole I Pice Miks 106.0-20.0	A. COX R DAVINROY, FE.			INROY, PE.	
	HI HH WA'TER:	LANDING/P	LA TRU	12/02/2005	

A COX

A COX

12/02/2008 Scan

R DAVINROY, PE.

12/02/2008

ACON J. BROWN , PE. E. BRAUER

n na Wa'teri landing/pla'tei

A COX

A COX

US Army Corps of Engineers St. Louis District^{*}

US. ABMY ENGINEER DIVISION	A COX		12/03/2006 Scan	
CODES OF ENGINEERS ST LOUE, MISSOURI	ACOX	J. BROWN	, PE.	E. BRAUER
MES ESIPPIEIVEE FASIN Where Lasling HER Model Rice Mike 106.0-100.0	A. CON R DAVIN ROY, PE			INROY, PE.
	ни нин 			

US. ARMY ENGINEER DIFISION CORPS OF ENGINEERS ST LOUE, MESOURI	A COX		12/04/2008 Scan	
	ACOX	J. BROWN	, PE	E. BRAUER
MES ESIPPI LIVEL BASIN Vales Luiling HS E Mole I Eise (Miks 106.0-100.0	A. COX R DAVINROY, FE.			INROY, PE.
	HID HIM WA'TER:	LANDING/PI	61123	12/04/2005

US. ABMY ENGINEER DIVISION CORFS OF ENGINEERS ST LOUIS, MISSOURI	A COX		12/05/2008 Scan	
	ACOX	J. BROW	I, PE	E. BRAUER
MES ESIPPIEIVEE FASIN Vales Luiling HS F Mole I Fig : Miks 106.0-100.0	A COX R DAVINROY, FE.			INROY, PE.
	HID HIM WA'TERS	LANDING/P	-	12/05/2005

