FINAL REPORT—APRIL 2010

TECHNICAL REPORT M47

THEBES STONE DIKE REVETMENT HYDRAULIC SEDIMENT RESPONSE MODEL STUDY UPPER MISSISSIPPI RIVER MILES

Authors: Mary M. Miles, P.E., David C. Gordon, P.E., Edward H. Riiff, Robert D. Davinroy, P.E., Bradley J. Krischel, E.I.T.

U.S. ARMY CORPS OF ENGINEERS ST. LOUIS DISTRICT HYDROLOGIC AND HYDRAULICS BRANCH APPLIED RIVER ENGINEERING CENTER FOOT OF ARSENAL STREET ST. LOUIS, MISSOURI 63118

Sponsored by and Prepared for: U. S. Army Corps of Engineers—St. Louis District, Regulating Works Stone Dike Alteration Program

In Cooperation With: Illinois Department of Natural Resources Missouri Department of Conservation U.S. Fish and Wildlife Service

Approved for Public Release; Distribution is Unlimited

Technical Report M47

THEBES STONE DIKE REVETMENT HYDRAULIC SEDIMENT RESPONSE MODEL STUDY UPPER MISSISSIPPI RIVER MILES 43.0 – 35.0

By Mary M. Miles, P.E. David C. Gordon, P.E. Edward H. Riiff Robert D. Davinroy, P.E. Bradley J. Krischel, E.I.T.

U.S. ARMY CORPS OF ENGINEERS ST. LOUIS DISTRICT HYDROLOGIC AND HYDRAULICS BRANCH APPLIED RIVER ENGINEERING CENTER FOOT OF ARSENAL STREET ST. LOUIS, MISSOURI 63118

Sponsored by and Prepared for: U.S ARMY CORPS OF ENGINEERS – ST. LOUIS DISTRICT REGULATION WORKS STONE DIKE ALTERATION PROGRAM

In Cooperation With: ILLINOIS DEPARTMENT OF NATURAL RESOURCES MISSOURI DEPARTMENT OF CONSERVATION U.S. FISH AND WILDLIFE SERVICE

Final Report – April 2010

Approved for Public Release; Distribution is Unlimited

INTRODUCTION

The U.S. Army Corps of Engineers, St. Louis District initiated a study of the Upper Mississippi River between Miles 43.0 and 35.0, approximately nine miles downstream of Cape Girardeau, Missouri. The study's main purpose was to evaluate design alternatives to the existing stone dike configurations in this reach of the river with intent to improve environmental habitat.

Ms. Mary M. Miles, P.E., hydraulic engineer and Mr. Edward H. Riff, engineering technician, under direct supervision of, Mr. David C. Gordon, P.E., hydraulic engineer and Mr. Robert D. Davinroy, P.E., Chief of River Engineering, conducted the study between March 2007 and December 2009. Other personnel also involved with the study included: Mr. Leonard Hopkins, P.E., Chief of Hydraulics and Hydrology Section, June Jeffries, P.E., Project Manager for Regulation Works, Mr. Brian Johnson and Mr. Ken Cook from the Environmental Branch of the Planning, Programs, and Project Management Division, Mr. Lance Engle, Dredging Project Manager. Personnel from other agencies involved in the study included: Mr. Butch Atwood from the Illinois Department of Natural Resources, and Ms. Joyce Collins from the U.S. Fish and Wildlife Service, and Mr. David Ostendorf from the Missouri Department of Conservation.

|--|

	1
LIST OF TABLES	3
BACKGROUND	4
1. Study Reach 4 2. Study Goal 6 3. History 7 4. Field Observations 8	4 5 7 8
HYDRAULIC SEDIMENT RESPONSE (HSR) MODEL DESCRIPTION)
1. Scales and Bed Materials 10 2. Appurtenances 10))
HSR MODEL TESTS11	1
1. MODEL CALIBRATION 11 A. HSR Model Operation 11 B. Prototype Data and Observations 11 C. Scheduled Construction 12 2. BASE TEST 13 3. DESIGN ALTERNATIVE TESTS 15	1 1 2 3 5
CONCLUSIONS)
1. SUMMARY 20 2. RECOMMENDATIONS 20 3. INTERPRETATION OF MODEL TEST RESULTS 20)) 1
FOR MORE INFORMATION23	3
APPENDIX OF PLATES24	4

LIST OF TABLES

Table 1: Existing River Training Structures	5
Table 2: Main Channel Width - Aerial Photography Comparsent	8
Table 3: Dredging Totals	8
Table 4: Field Visit Velocity and Depth Readings	9
Table 5: Planned Construction of River Training Structures	13
Table 6: HSR Model Alternatives and Evaluations	21
Table 7: Evaluation of Model Tests for Primary and Secondary Purposes	18

BACKGROUND

Hydraulic Sediment Response (HSR) modeling methodology was used to evaluate sediment transport conditions and the impact associated with the incorporation of future design alternatives along a reach of the Upper Mississippi River between River Miles (RM) 43.0 to 35.0. The study was funded by the Regulation Works Project as part of the Stone Dike Alteration Program of the U. S. Army Corps of Engineers, St. Louis District.

The goal of this study was to diversify aquatic habitat in this reach of the Upper Mississippi River by modifying existing dike structures, and developing new side channels and bar formations while maintaining the integrity of the navigation channel.

1. Study Reach

The study reach was located approximately nine miles downstream of Cape Girardeau, Missouri. The reach modeled was approximately eights miles of the Upper Mississippi River, between RM 43.0 and 35.0. The model included calibrated stretches from RM 41.5 to approximately 37.0 (including the side channel portions of the model). Plate 1 is a location and vicinity map of the study reach. The study area was located in Scott County, Missouri and Alexander County in Illinois. Both the Missouri and Illinois sides of the river were studied for environmental improvements.

Plate 5 is a 2006 aerial photograph illustrating the planform and nomenclature of the Upper Mississippi River between RM 43.0 and 35.0. The left descending bank (LDB) was composed of a series of islands, developing islands, and side channels. The right descending bank (RDB) was composed of a series of river training structures and rock outcroppings. New and old growth of cottonwoods and willows were prevalent on both the RDB and LDB.

At the time of this study, the entire study reach had a total of 60 dikes. Dikes 40.4L, 40.0L, and 39.6L act as closure structures on the LDB. Six dikes are longitudinal

4

dikes, nine dikes act as hardpoints in Santa Fe Chute and six dikes are remnant wood pilings. At the time of this study, construction plans were scheduled for five chevrons, one dike and one weir in the main channel of the study area. Table 1 lists all the existing river training structures in the study reach and approximate dike descriptions obtained from an April 2000 helicopter field visit. The dike fields are shown on Plate 5.

Structure Name	Lengt h from Bank (feet)	Approximate Top Elevation (feet) Taken From Aerial Photos	Approximate Height Above LWRP (Nearest half foot)	Date of Readings
MAII	N CHANN	EL STRUCTURES		
DIKE NO. 42.8 L	720	315.0	11.0	April 6, 2000
LONGITUDINAL DIKE NO. 42.8 L		315.0	11.0	April 6, 2000
DIKE NO. 42.5 L	980	Under	water	April 6, 2000
DIKE NO. 42.3 L		-	-	April 6, 2000
DIKE NO. 42.1 R	280	310.5	6.5	April 6, 2000
DIKE NO. 41.9 R		-	-	April 6, 2000
DIKE NO. 41.7 R	350	311.5	8.0	
DIKE NO. 41.7 L	1140	311.5	8.0	April 6, 2000
LONGITUDINAL DIKE 41.7 L		311.5	8.0	April 6, 2000
LONGITUDINAL DIKE 41.7 L		311.5	8.0	April 6, 2000
DIKE NO. 41.6 L	370	311.5	8.0	April 6, 2000
DIKE NO. 41.4 R	130	Under	water	April 6, 2000
LONGITUDINAL DIKE NO. 41.4 R		Under	water	April 6, 2000
DIKE NO. 41.4 L	1470	312.0	8.5	April 6, 2000
DIKE NO. 41.0 R		-	-	April 6, 2000
DIKE NO. 40.8 R	350	Under	water	April 6, 2000
DIKE NO. 40.6 R		-	-	April 6, 2000
DIKE NO. 40.6 L	1180	312.0	9.0	April 6, 2000
DIKE NO. 40.4 L	900	312.0	9.0	April 6, 2000
DIKE NO. 40.2 R	440	311.5	9.0	April 6, 2000
DIKE NO. 40.0 R	300	311.5	9.0	April 6, 2000
DIKE NO. 40.0 L		-	-	April 6, 2000
DIKE NO. 39.7 R	320	311.5	9.0	April 6, 2000
DIKE NO. 39.6 L	1020	311.5	9.5	April 6, 2000
LONGITUDINAL DIKE NO. 39.6 L		311.5	9.5	April 6, 2000
DIKE NO. 39.4 R	250	311.5	9.5	April 6, 2000
DIKE NO. 39.1 R	300	312.0	10.0	April 6, 2000
DIKE NO. 38.9 R	340	312.0	9.5	April 6, 2000

Table 1: Existing River Training Structures

DIKE NO. 38.6 R	450	Under	water	April 6, 2000
DIKE NO. 38.4 R	550	311.0	10.0	April 6, 2000
DIKE NO. 38.3 L	220	312.0	11.0	April 6, 2000
DIKE NO. 38.2 R	360	311.0	10.0	April 6, 2000
DIKE NO. 38.0 R	230	312.0	11.0	April 6, 2000
DIKE NO. 38.0 L	480	312.0	11.0	April 6, 2000
DIKE NO. 37.8 R	420	310.5	9.5	April 6, 2000
DIKE NO. 37.7 L		Remnant Wood	Piling	August 15, 2007
DIKE NO. 37.6 R	270	311.5	11.0	April 6, 2000
DIKE NO. 37.5 L	420	311.5	11.0	April 6, 2000
DIKE NO. 37.4 L		Remnant Wood	Piling	August 15, 2007
DIKE NO. 37.2 L	500	310.5	10.0	April 6, 2000
DIKE NO. 37.1 L		Remnant Wood	Piling	August 15, 2007
DIKE NO. 36.7 L	450	310.0	10.0	April 6, 2000
DIKE NO. 36.5 L	500	310.0	10.0	April 6, 2000
DIKE NO. 36.2 L	430	Under	water	April 6, 2000
DIKE NO. 35.9 L	450	311.0	11.5	April 6, 2000
DIKE NO. 35.7 L		Remnant Wood	Piling	August 15, 2007
DIKE NO. 35.5 L	350	311.75	13.0	April 6, 2000
DIKE NO. 35.2 L		Remnant Wood	Piling	August 15, 2007
DIKE NO. 35.1 R	380	310.59	12.0	April 6, 2000
LONGITUDINAL DIKE NO. 35.1 R		310.59	12.0	April 6, 2000
S	Side Chan	nel Structures		
DIKE NO. 41.4 L (CLOSURE STURCTURE)		Not Me	asured	Not Applicable
DIKE NO. 40.0 L (CLOSURE STRUCTURE)		Remnant Wood	Piling	August 15, 2007
DIKE NO. 39.6 L (CLOSURE STRUCTURE)		Not Me	asured	Not Applicable
DIKE NO. 35.0 L	1000	310.55	12.0	April 6, 2000
DIKE NO. 38.7 L (HARD POINT)	300	-	-	-
DIKE NO. 38.4 L (HARD POINT)	300	-	-	-
DIKE NO. 38.1 L (HARD POINT)	300	-	-	-
DIKE NO. 37.7 L (HARD POINT)	300	-	-	-
DIKE NO. 37.5L (HARD POINT)	300	-	-	-
DIKE NO. 37.3 L (HARD POINT)	300	-	-	-
DIKE NO. 37.15 L (HARD POINT)	300	-	-	-
DIKE NO. 37.05 L (HARD POINT)	300	-	-	-
DIKE NO. 39.6 L (HARD POINT)	300	-	-	-

2. Study Goal

The Stone Dike Alteration Program was initiated by the St. Louis District to improve environmental habitat in reaches of the Middle Mississippi River with flow patterns that have been established by stone dikes. Reaches of the Mississippi River and priorities of those reaches were agreed upon by the St. Louis District Corps of Engineers, the U. S. Fish and Wildlife Agency, Missouri Department of Conservation and the Illinois Department of Natural Resources. The primary goal of this study was to investigate alterations, additions or subtractions to the existing dike configurations in the Thebes reach that will provide increased environmental diversification while not negatively impacting the navigation channel.

3. History

The construction of river training structures has caused the river channel study reach to change over time.

1928 aerial photos (Plate 2) of the project area showed no river training structures in the study reach. Thebes Bridge, located just upstream of the study reach, was constructed between 1902 and 1905. Differences between the 1928 and 2006 aerial photos can be seen on Plates 2 & 5. The main differences existed in the island structures along the LDB and the constriction of the main channel along the entire study reach of the main channel.

1956 sounding maps (Plate 3) showed that most of today's structures were already in place. Differences between the 1956 sounding maps and 2006 aerial photos can be seen on Plates 3 & 5. Again, the main differences existed in the island structures along the LDB and the constriction of the main channel along the entire study reach of the main channel. Islands were starting to develop due to the construction of the dike fields along the LDB.

1970 aerial photos (Plate 4) of the project area showed a channel configuration very similar to that shown in the 2006 aerial photos (Plate 5).

Table 2 lists the variation in main channel width between the aerial photos and sounding maps listed above.

Year	RM 43	RM 42	RM 41	RM 40	RM 39	RM 38	RM 37	RM 36	RM 35	AVG.
1928	2300 ft	3500 ft	3300 ft	3500 ft	3000 ft	2600 ft	3900 ft	2000 ft	2000 ft	2900 ft
1956/ 1957	-	2500 ft	2600 ft	2300 ft	1200 ft	2000 ft	2100 ft	2000 ft	2100 ft	2100 ft*
1970	2000 ft	2400 ft	3000 ft	2300 ft	2000 ft	2000 ft	1700 ft	2000 ft	2200 ft	2200 ft
2006	1700 ft	3000 ft	3200 ft (Island on LDB)	2100 ft (Island on LDB)	1800 ft	1700 ft	1600 ft	1850 ft	2000 ft	2100 ft
AVG.	2000 ft*	2850 ft	3025 ft	2550 ft	2000 ft	2075 ft	2325 ft	1950 ft	2075 ft	

Table 2: Main Channel Width take from Aerial Photography by Year and River Mile (RM) asDesignated in 2006

*1956/1957 not included in average

Dredging totals for two mile reaches of the river are shown in Table 3

Table	3:	Dredging Totals
TUDIC	υ.	Dicaging iotais

Total (1995-2006)	RM 44-42	RM 42-44	RM 40-38	RM 38-68
Occurrences	3	3	8	1
Cubic Yards x (100)	7,333	6,147	20,217	1,275

4. Field Observations

Personnel from the Applied River Engineering Center inspected the study reach. These reconnaissance missions allowed the site to be photographed and studied. The site visits are described below.

August 15 and 16, 2007:

The Thebes, Illinois gage (RM 43.7) was at a stage of 15.1 ft / +10.1 ft LWRP on August 15 and 14.1 ft / +9.1 ft LWRP on August 16.

Velocity data was taken on this site visit. The results are as follows.

River Mile	Channel Location	Depth (ft)	Velocity (ft/s)
43	Downstream of Thebes Bridge, Mid-channel	50	5.7
41.2	Side-channel, Upstream of Santa Fe Chute	22	2.4
37	Mid-channel	29.5	3.5
35	Illinois Side, Main-channel side of Santa Fe Chute	18	3.6
35	Mid-channel	23	3.2

Table 4: Field Visit Velocity and Depth Readings

The shore lines had abundant vegetation, mostly in the form of willows varying in height. Some vegetation was observed on existing river training structures.

Santa Fe Chute had gravel bars just downstream of closure structure 39.6L. Depth was available in Santa Fe Chute for jon boat access to existing sandbar (one-third the way up side-channel).

HYDRAULIC SEDIMENT RESPONSE (HSR) MODEL DESCRIPTION

1. Scales and Bed Materials

A physical HSR model was designed and constructed to investigate the sediment transport conditions described previously. Plate 6 is a photograph of the HSR model used in this study. The zero reference plane of the prototype was assumed to be at the LWRP (Low Water Reference Plane) condition. The model employed a horizontal scale of 1 inch = 500 ft, or 1:6000, and a vertical scale of 1 inch = 55 ft, or 1:660, for a 9.1 to 1 distortion ratio of linear scales. This distortion supplied the necessary forces required for the simulation of sediment transport conditions similar to those of the prototype. The bed material used was granular plastic urea, Type II, with a specific gravity of 1.40.

2. Appurtenances

The HSR model insert was constructed according to 2006 aerial photography of the study reach. The insert was then mounted in a standard HSR flume. The riverbanks of the model were constructed from dense polystyrene foam. Rotational jacks located within the hydraulic flume controlled the slope of the model. The measured slope of the insert and flume was approximately 0.01 inch/ inch. River training structures in the model were made of galvanized steel mesh.

Flow into the model was regulated by customized computer hardware and software interfaced with an electronic control valve and submersible pump. This interface was used to automatically control the flow of water and sediment into the model. Discharge was monitored by a magnetic flow meter interfaced with the customized computer software. Water stages were manually checked with a mechanical three-dimensional point digitizer. Resultant bed configurations were measured and recorded with a three-dimensional laser digitizer.

HSR MODEL TESTS

1. Model Calibration

The calibration of the HSR model involved the adjustment of water discharge, sediment volume, model slope, and entrance and exit conditions of the model. These parameters were refined until the measured bed response of the model was similar to that of the prototype.

A. HSR Model Operation

In all model tests, a steady state flow was simulated in the Upper Mississippi River channel. This served as the average design energy response for the river. This steady state was used to theoretically analyze the ultimate expected sediment response. The flow was held steady at a constant flow rate of approximately 1.8 gallons per minute (GPM) during model calibration and for all design alternative tests. The most important factor during the modeling process is the establishment of an equilibrium condition of sediment. The steady flow in the model simulated an average energy condition representative of the river's channel forming flow and sediment transport potential at bankfull stages.

B. Prototype Data and Observations

To determine the general bathymetric characteristics and sediment response trends that existed in the prototype, several present and historic hydrographic surveys were examined. Comprehensive hydrographic surveys were taken in 1970, 1989, 1995, 1998, 2000, 2001, and 2005 (Plates 7, 8, 9, 10, 11, 12, and 13). A 2001 detailed channel and side channel sweep survey of the study reach, between approximately River Miles 40.4L and 35.0L is shown on Plate 12. All of the comprehensive surveys listed above had similar bathymetric trends to each other and were used to calibrate the hydraulic sediment response model. The trends of the river in the 1989 survey were similar to the other years, but the depths were shallower due to drought conditions.

The general trends of the prototype as observed in the hydrographic surveys are described as follows:

- At the entrance of the study reach, the thalweg was located along the LDB near RM 43.0 with depths up to approximately -30 ft LWRP.
- A rock outcropping existed on both the LDB (entrance of model to RM 43.4) and RDB (RM 43.6 to 42.9).
- Scour holes of various sizes existed off the tips of all dikes within the reach. A large scour hole existed between RM 40.7 and 40.5 on the RDB and reached depths of -40 to -50 ft LWRP. Another large scour hole was observed off the tip of Dike 39.6L and reached depths of -40 to -50 ft LWRP.
- A channel crossing from the LDB to the RDB began at RM 43.0 and ended at RM 42.0. A dredging problem existed within this crossing with some depths surveyed as shallow as -6 to -10 ft LWRP.
- The channel remained along the RDB from RM 42.0 to 40.0 with depths ranging between -15 ft to -30 ft LWRP.
- A channel crossing from the RDB to the LDB began at RM 40.0 and ended at RM 38.5. Dike No. 39.6R forced the thalweg back over to the LDB. A dredging area existed in the crossing between river mile 40.0 and 38.4 with depths as shallow as -5 ft LWRP.
- The channel remained along the RDB from RM 38.5 to 35.0 with depths ranging between -15 ft to -30 ft LWRP. Shoaling existed along the LDB between RM 35.0 to the end of the study reach.

C. Scheduled Construction

At the time of the study several river training structures were scheduled to be constructed in this reach of river. These scheduled construction projects were placed in the model after the model was calibrated with current river structures. Structure dimensions were taken from construction plans. Future, scheduled river structures are shown on Plate 14. A list of structures scheduled for construction is shown on Table 5.

River Mile	Construction Date	Status	Elevation (LWRP)
DIKE NO. 40.4 L	Fiscal Year 2010	200 ft Dike Extension	Elev. 318 ft
DIKE NO. 40.4 L	Fiscal Year 2010	100 ft Notch	Elev. 305 ft
WEIR NO. 39.6 L	Fiscal Year 2010	Existing Dike Attachment	Elev. 287 ft
DIKE NO. 36.7 L	Fiscal Year 2010	150' Partial Dike Removal	Existing Grade
CHEVRON 36.7 L	Fiscal Year 2010	New	Elev. 316 ft
DIKE NO. 36.5 L	Fiscal Year 2010	220' Partial Dike Removal	Existing Grade
CHEVRON 36.5 L	Fiscal Year 2010	New	Elev. 316 ft
DIKE NO. 36.2 L	Fiscal Year 2010	57' Partial Dike Removal	Existing Grade
CHEVRON 36.2 L	Fiscal Year 2010	New	Elev. 315 ft
DIKE NO. 35.9 L	Fiscal Year 2010	235' Partial Dike Removal	Existing Grade
CHEVRON 35.9 L	Fiscal Year 2010	New	Elev. 315 ft

Table 5: Planned Construction of River Training Structures

2. Base Test

Model calibration was achieved after it was determined through qualitative comparisons that the base test surveys were similar to several prototype surveys of the river. The resultant bathymetry of the base test is shown on Plate 15. The base test was developed from the simulation of successive repeatable steady state flow tests until bed stability was reached and a similar bed response was achieved as compared with prototype surveys. After the base test was achieved, the river training structures scheduled to be constructed and altered were added to the model. This base test survey (including the river training structures to be constructed and altered) served as the comparative bathymetry for all design alternative tests (Plate 16). Results of the HSR base test bathymetry (without river training structures to be constructed) and a comparison to the prototype surveys indicated the following trends:

- At the entrance of the study reach the thalweg was located along the LDB near RM 43.0 with depths up to approximately -30 ft LWRP.
- A rock outcropping was placed on both the LDB (entrance of model to RM 43.4) and RDB (RM 43.6 to 42.9).

- A channel crossing from the LDB to the RDB began at RM 43.0 and ended at RM 42.0. Shoaling existed in the crossing between RM 43.0 and 41.6. This section of the model was part of the entrance conditions.
- The channel remained along the RDB from RM 42.0 to 40.0 with depths ranging between -15 ft to -30 ft LWRP.
- A channel crossing from the RDB to the LDB began at RM 40.0 and ended at RM 39.0. Dike No. 39.6L forced the thalweg back over to the RDB.
- A shoaling area existed along the RDB between RM 40.5 and 39.0 with depths shallowing to -2 ft LWRP. A shallowing in the crossing between RM 40.0 and 38.0 exists with depths to -8 ft LWRP.
- The channel remained along the RDB from RM 38.0 to 35.0 with depths ranging between -10 ft to -30 ft LWRP. A shoaling existed along the LDB between RM 38.0 to the exit conditions of the model. The shoaling extending across the entire channel width starting at RM 36.5. This was due to exit conditions and the area is not considered as part of the calibrated model.
- Santa Fe Chute was not considered as part of the calibrated model. Sediment conditions were maintained in equilibrium throughout the modeling process but were not studied.

The main differences between the model (without river training structures to be constructed) and prototype surveys are:

- Entrance and exit conditions did not coincide with the prototype. The model was generally considered calibrated between RM 41.5 and 37.0. Areas outside of these locations were not used in the modeling process.
- Scour hole formations off the tips of most of the dikes were not as definite within the reach with the exception of Dike 39.6L.
- The scour hole surrounding Dike 39.6L was much larger than in the prototype due to constraints of the model and non-permeable surfaces used to mimic the restriction of water from the main channel into the side channel.

- Santa Fe Chute was not considered as part of the calibrated model. Sediment conditions were maintained in equilibrium throughout the modeling process but were not studied.

Results of the HSR base test bathymetry (including the river training structures to be constructed and altered) differed slightly from the base test. The differences are as follows:

- The crossing from RDB to LDB occurred a half mile upstream of that of the prototype. The crossing started at RM 40 in the prototype and at RM 39.5 in the model with construction. This early crossing was most likely caused by scheduled construction to existing Dikes 40.4L and 39.6L.
- The shallowing at the crossing starting at RM 39.0 was reduced due to scheduled construction.

In general, the overall bathymetric trends established in the HSR model base test were similar to those trends observed in the prototype. The main differences were the shallow depth or lack of scour holes behind most of the dikes in this stretch of the Upper Mississippi River. The depth of the scour holes shown in the prototype were most likely formed during high flow events. Since this model study simulated average design energy the scour holes were shallower in the base test.

3. Design Alternative Tests

All design alternatives studied in the HSR model utilized the existing dike configurations in the prototype surveys. All proposed construction as listed in Table 5 were utilized. Eleven design alternative plans were model tested to examine methods of modifying the sediment transport response trends that would foremost create greater environmental diversity in the study reach while not negatively impacting the navigation channel. The effectiveness of each design was evaluated by comparing the resultant bed configuration to that of the base test. Impacts or changes induced by each alternative were evaluated by observing the sediment response of the model. Alternatives were considered successful if noticeable, increased environmental bed diversity occurred while not producing negative impacts to the navigation channel. Because of this loose criteria, an alternatives success was more subjective then when an alternative is used to find a decrease in sedimentations. Examples of alternatives that could be considered successful would produce secondary side channels, increase scour hole patterns, or increased flow to an existing side channel. Table 6 outlines the different alternatives that were run, defines if an alternative was successful or not, and shows brief comments about that alternative.

Alternative Number Str	4	4	1 4	(Plate 17) 4	4	2					4	4	3	4 (Plate 10)	(* 1912 12) 4	4	4	4	4	(Plate 20) 4	4	ω	ω		сл ц	5 3 (Plate 21) 3
ucture	12.4L	12.2L	12.0L	1.8L	1.6L	11.4L	1.0R	10.8R	10.6R	10.2R	10.0R	1.0R	10.8R	10.6R	10.2R	10.0R	1.0R	10.8R	10.6R	10.2R	10.0R	39.8L	9.4R	9.1R	8.9R	
Type of Structure	Install Chevron	Install Chevron	Install Chevron	Install Chevron	Install Chevron	Install Chevron	Remove Dike Section	Remove Dike Section	Remove Dike Section	Remove Dike Section	Remove Dike Section	Notch Existing Dike	Notch Existing Dike	Remove Dike Section	Remove Dike Section	Remove Dike Section	Notch Existing Dike	Notch Existing Dike	Remove Dike Section	Remove Dike Section	Remove Dike Section	Install Dike	Install Rootless Dike	Install Rootless Dike	Install Rootless Dike	
Dimension/Height (ft)	300 x 300/ +18 LWRP	301 x 300/ +18 LWRP	302 x 300/ +18 LWRP	303 x 300/ +18 LWRP	304 x 300/ +18 LWRP	305 x 300/ +18 LWRP	200 / -15 LWRP	201 / -15 LWRP	202 / -15 LWRP	203 / -15 LWRP	204 / -15 LWRP	200/ +5 Grade	200/ +5 Grade	200/ -15 LWRP	200/ -15 LWRP	200/ -15 LWRP	200/ +5 Grade	200/ +5 Grade	200/ -15 LWRP	200/ -15 LWRP	200/ -15 LWRP	500/ +18 LWRP	200/ +18 LWRP	200/ +18 LWRP	200/ +18 LWRP	
Alternative Successful			2)	NO			Z			No TF				No					2)	140				2)	NO	
Comments		This alternative was tested because it is part of	future Master Plan designs. It showed what may be	general trends from the structures, but was outside	the range of the calibration of the model.		This alternative did not create additional diversit the area. In addition, the changes could adverse affect planned construction work to Weir 39.6I						This alternative did not create additional diversity in	the area. In addition, the changes could adversely	affect planned construction work to Weir 39.6L.			This alternative did not create additional diversity in	affort plannod construction work to Woir 20 61	This alternative may be feasible in the future if	dredging issues around RM 39.0 persist.		<u>1</u> - - -	I his alternative created a secondary flow split	around the structures. Additional sedimentation	OCCURRENT AND THE STRUCTURES ON THE RUNK

Table 6: HSR Model Alternatives and Evaluations

This alternative did not increase environmental diversity. It may be an option if dredging problems persist downstream after the installation of Weir 39.6L.	No	500/ +18 LWRP	Install Dike	39.8L	9 (Plate 25)
uncalibrated conditions at the entrance and exit of the side channel.		100/ +5 Grade	Notch Existing Dike	40.6L	
continuous channel through 41.4L. In addition side channel modeling in is not conclusive due to	No	+5 Grade	Remove Closure Structure	41.4L	8 (Plate 24)
This alternative increased the size of scour holes around 41.7L and 40.6L but did not allow for a		100/ +5 Grade	Notch Existing Dike	41.7L	
		200/ +18 LWRP	Install Rootless Dikes	38.6R	
		200/ +18 LWRP	Install Rootless Dikes	38.9R	
		200/ +18 LWRP	Install Rootless Dikes	39.1R	
		200/ -15 LWRP	Remove Dike Section	40.0R	
structures on the RDB.		200/ +18 LWRP	Install Rootless Dikes	40.0L	(Plate 23)
hut not a continuous split flow along the lower	2	200/ -15 LWRP	Remove Dike Section	40.0R	7
		200/ -15 LWRP	Remove Dike Section	40.2R	
		200/ -15 LWRP	Remove Dike Section	40.6R	
		200/ +5 Grade	Notch Existing Dike	40.8R	
		200/ +5 Grade	Notch Existing Dike	41.0R	
necessary.		200/ +18 LWRP	Install Rootless Dikes	38.6R	
40.4L may cause interference with weir 39.6L. Recommend construction at a later date if		200/ +18 LWRP	Install Rootless Dikes	38.9R	
the navigation channel is along the LDB. Dike	Yes	200/ +18 LWRP	Install Rootless Dikes	39.1R	6 (Plate 22)
around the structures. Additional sedimentation occurred around the structures on the RDB but		200/ +18 LWRP	Install Rootless Dikes	39.4R	
This alternative created a secondary flow split		200/ +18 LWRP	Install Rootless Dikes	40.0L	
Comments	Alternative Successful	Dimension/Height (ft)	Type of Structure	Structure	Alternative Number

			c		
		150/ +5 Grade	Notch Existing Dike	38.2R	
	No	150/ +5 Grade	Notch Existing Dike	38.4R	LT (Diate 32)
T		150/ +5 Grade	Notch Existing Dike	38.6R	2
new chevrons s		202/ +5 Grade	Notch Existing Dike	37.2L	
diversity in th inprudent to ins	No	201/ +5 Grade	Notch Existing Dike	37.5L	10 (Plate 26)
This alternativ		200/ +5 Grade	Notch Existing Dike	38.0L	
	Alternative Successful	Dimension/Height (ft)	Type of Structure	Structure	Alternative Number

CONCLUSIONS

1. Summary

Several alternative design tests were conducted for this HSR model study. The primary intention of each alternative tested was increasing environmental diversity in this stretch of river. Alternative 1 was the only exception to this and was tested to show the results of a current plan under consideration to relieve persistent dredging conditions. Secondary negative impacts to the navigation channel were also monitored in these alternative tests.

Test	Substantial Increased Environmental Diversity	Negative Impacts to Main Navigation Channel	Possible Negative Impacts to Schedule FY10 Construction
Alternative 1			
Alternative 2			X
Alternative 3			X
Alternative 4			X
Alternative 5	X		
Alternative 6	X		X
Alternative 7			X
Alternative 8	X		
Alternative 9			Х
Alternative 10			
Alternative 11			Х

 Table 7: Evaluation of Model Tests for Primary and Secondary Purposes

2. Recommendations

Alternatives 5 and 8 both provided increased environmental diversity in the model. Alternative 5 created a split flow pattern around the tested structures in the model. The split flow did create a small side channel but did not offer a great difference in depth through the side channel. Sedimentation along the RDB outside the main navigation channel was also created from this alternative. The small increase in split flow diversity from these structures would not create a great benefit for the construction costs and sedimentation that is caused. Alternative 8 consisted of changes to the side channel. This design showed increased flow in the side channel but no significant depth reduction around the area of closure structure 41.4L. Future high flow events of this area may cause the area to scour further and provide for increased flow through the side channel year round. However, the full extent of Alternative 8 could not be tested in this model due to entrance and exit conditions of the side channel being outside of the model extents. Alternative 8 is recommended for further study but cannot be conclusively recommended from this study.

It is recommended that neither Alternative 5 nor 8 be constructed at this time. Future construction plans from this model may be merited after monitoring of the new river training structures (to be completed FY10) has been done. In the future, if it is warranted and issues from sedimentation are along the RDB caused by Alternative 5 are still non-intrusive to the main Navigation Channel, then Alternative 5 may be a viable option for increased diversity. If further alleviation from dredging is needed around RM 39 after the construction of Weir 39.6L then the rootless dike extension off Dike 40.0L from Alternative 6 and Dike 39.8L from Alternative 9 may be viable options. Both of these alternatives may cause negative impacts to Weir 39.6L by filling in the scour hole in the area around the weir.

3. Interpretation of Model Test Results

In the interpretation and evaluation of the results of the tests conducted, it should be remembered that the results of these model tests were qualitative in nature. Any hydraulic model, whether physical or numerical, is subject to biases introduced as a result of the inherent complexities that exist in the prototype. Anomalies in actual hydrographic events, such as prolonged periods of high or low flows are not reflected in these results, nor are complex physical phenomena, such as the existence of unknown underlying rock formations or other non-erodible variables. Flood flows were not simulated in this study.

21

This model study was intended to serve as a tool for the river engineer to guide in assessing the general trends that could be expected to occur in the actual river from a variety of imposed design alternatives. Measures for the final design may be modified based upon engineering knowledge and experience, real estate and construction considerations, economic and environmental impacts, or any other special requirements.

FOR MORE INFORMATION

For more information about HSR modeling or the Applied River Engineering Center, please contact Mr. Robert Davinroy, P.E. at:

Applied River Engineering Center U.S. Army Corps of Engineers - St. Louis District Hydrologic and Hydraulics Branch Foot of Arsenal Street St. Louis, Missouri 63118

Phone: (314) 865-6326 Fax: (314) 865-6352

E-mail: Robert.D.Davinroy@usace.army.mil

Or you can visit us on the World Wide Web at: http://www.mvs.usace.army.mil/eng-con/expertise/arec/index.html

APPENDIX OF PLATES

- 1. Location and Vicinity Map of the Study Reach
- 2. 1928 Project and Progress Map
- 3. 1956 Sounding Maps
- 4. 1970 Aerial Photograph
- 5. 2006 Aerial Photograph
- 6. Thebes HSR Model
- 7. 1970 Hydrographic Survey
- 8. 1989 Hydrographic Survey
- 9. 1995 Hydrographic Survey
- 10. 1998 Hydrographic Survey
- 11. 2000 Hydrographic Survey
- 12. 2001 Hydrographic Survey
- 13. 2005 Hydrographic Survey
- 14. Scheduled Construction in Study Reach
- 15. Base Test
- 16. Base Test with Scheduled Construction
- 17. Alternative 1
- 18. Alternative 2
- 19. Alternative 3
- 20. Alternative 4
- 21. Alternative 5
- 22. Alternative 6
- 23. Alternative 7
- 24. Alternative 8
- 25. Alternative 9
- 26. Alternative 10
- 27. Alternative 11

Location and Vicinity Map

U.S. ARMY CORPS OF ENGINEERS	PLOT DATE: April 1	3, 2010
ST. LOUIS, DISTRICT	PREPARED BY: M. Miles, P.E.	DRAWN BY: M. Miles, P.E
UPPER MISSISSIPPI RIVER BASIN Thebes HSR Model	CHECKED BY: R. Davin	ıroy, P.E.
River Miles 44 - 35	FILE NAME: ARC/1	THEBES

466,000

DIKE NO. 35.0L

826,000

35

461,500

817,000

812,500

830,500

821,500

479,500

April 13, 2010

PREPARED BY: DRAWN BY: M. Miles, P.E. M. Miles, P.E.

R. Davinroy, P.E.

...ARC/THEBES

E NAME

	U.S. ARMY CORPS OF ENGINEERS ST. LOUIS, DISTRICT
Thebes HSR Model	UPPER MISSISSIPPI RIVER BASIN Thebes HSR Model River Miles 44 - 35

Louis District

794,500

794,500

506,500 808,000 812,500

794,500

803,500

799,000

794,500

790,000

506,500 808,000 812,500 511,000

ineers

803,500

