Technical Report M67

MORO CHUTE HSR MODEL RIVER MILES 125.00 – 117.00

HYDRAULIC SEDIMENT RESPONSE MODEL INVESTIGATION

By Ivan H. Nguyen Robert D. Davinroy, P.E. Jasen L. Brown, P.E. Edward J. Brauer, P.E. Ashley N. Cox Charles A. Wardle Jason J. Floyd Adam M. Rockwell

U.S. ARMY CORPS OF ENGINEERS ST. LOUIS DISTRICT HYDROLOGIC AND HYDRAULICS BRANCH APPLIED RIVER ENGINEERING CENTER FOOT OF ARSENAL STREET ST. LOUIS, MISSOURI 63118

Sponsored by and Prepared for: U.S. ARMY CORPS OF ENGINEERS – ST.LOUIS DISTRICT AVOID & MINIMIZE PROGRAM

In Cooperation With: ILLINOIS DEPARTMENT OF NATURAL RESOURCES UNITED STATES FISH & WILDLIFE SERVICE MISSOURI DEPARTMENT OF CONSERVATION RIVER INDUSTRY ACTION COMMITTEE

Final Report – March, 2013

Approved for Public Release; Distribution is Unlimited

INTRODUCTION

The U.S. Army Corps of Engineers, St. Louis District, conducted a sedimentation improvement study of the Mississippi River at Moro Chute from River Mile (RM) 125.00 to RM 117.00. This study was funded by the Avoid and Minimize (A&M) Program. The objective of the model study was to produce a report that outlined the results of an analysis of various river engineering measures, intended for the development of side channel habitat and to enhance the environmental diversity along the left descending bank (LDB) of Moro Island without negatively affecting the navigation channel.

The study was conducted between October 2012 and February 2014 at the Applied River Engineering Center (AREC), U.S. Army Corps of Engineers, St. Louis District. The study was performed by Mr. Ivan H. Nguyen, Hydraulic Engineer, under direct supervision of Mr. Robert D. Davinroy, P.E., Chief of River Engineering Section for the St. Louis District. See Table 1 for other personnel involved in the study.

Table 1: Other Personne	Involved	in the	Study
-------------------------	----------	--------	-------

Name	Position	District/Company	
Leonard Honkins P.F.	Chief of Hydrologic and	St. Louis District	
	Hydraulic Branch		
Ashley Cox	Hydraulic Engineer	St. Louis District	
Jasen Brown, P.E.	Acting Project Manager	St. Louis District	
Edward Brauer, P.E.	Hydraulic Engineer	St. Louis District	
Jason Floyd	Engineering Technician	St. Louis District	
Sarah Markenson	Real Estate	St. Louis District	
Adam Rockwell	Cartographic Technician	St. Louis District	
Shawn Kempshall	River Surveyor	St. Louis District	
Lance Engle	Dredge Project Manager	St. Louis District	
Charles Wardle	Student Co-Op	St. Louis District	
Brian Johnson	Chief of Environmental	St. Louis District	
Bhan Johnson	Planning Section		
David Gordon, P.E.	Chief of Hydraulic Design	St. Louis District	
Mike Rodgers, P.E.	Project Manager	St. Louis District	
Dawn Lamm	Hydraulic Design	St. Louis District	
Peter Russell, P.E.	Hydraulic Design	St. Louis District	
Romanda Walker	Public Affairs	St. Louis District	
Kathryn Mccain	Ecologist	St. Louis District	
Butch Atwood	Mississippi River Fishery	Illinois Department of Natural	
	Biologist	Resource (IDNR)	
Matthew Mangan	Biologist	U.S. Fish and Wildlife (FWS)	
Donovan Henry	Biologist	U.S. Fish and Wildlife (FWS)	
Bernie Heroff	Port Captain	ARTCO	
Ed Henleben	Senior Operations Manager	River Industry Action Committee	
		(RIAC)	
Dave Ostendorf	Fishery Biologist	Missouri Department of	

		Conservation (MDC)
Mark Boone	Program Advisor	Missouri Department of
		Conservation (MDC)
Fisheries Managemen		Missouri Department of
Dave Khuin	Biologist	Conservation (MDC)
Ryan Christensen	Waterways Assistant Chief	U.S. Coast Guard
Shannon Hughes	Port Captain	Kirby Inland Marine
Terry Hoover	Safety Manager	Ingram Barge Company
Michael Canada	Operator	Ingram Barge Company

TABLE OF CONTENTS

INTRODUCTION	2
TABLE OF CONTENTS	5
BACKGROUND	6
1. Problem Description	6
2. Study Purpose and Goals	7
3. Study Reach	7
A. Features and Structures	8
B. Primary Side Channel	15
C. Secondary Side Channel	15
D. Main Side Channel	16
E. Main Channel	
F. Real Estate	17
G. Geomorphology	
H. Channel Characteristics and General Trends	22
i. Bathvmetrv	
ii Site Data	24
	27
1 Model Colibration and Paplication	
Model Calibration and Replication Scales and Red Materials	20
3 Appurtenances	20
4. Flow Control	
5. Data Collection	
A. 3D Laser Scanner	
B. Flow Visualization	27
6. Replication Test	27
7. Design Alternative Tests	
CONCLUSIONS	65
1. Evaluation and Summary of the Model Tests	65
2. Recommendations	
3. Interpretation of Model Test Results	68
For more information	70
APPENDIX	71
1. Report Plates	71
2. Meeting Minutes	75
3. Cross Section Comparison	
4. HSK Modeling Theory	
D. FIOW VISUAIIZATION RESULTS	84

BACKGROUND

1. Problem Description

The main channel near Moro Chute has been sufficient for navigation with depths that were at least -10 feet Low Water Reference Plane (LWRP). However, the dike field along the LDB at Moro Island has caused a lack of bathymetric diversity. The sandbar located along the LDB against Moro Island, from RM 122.50 to RM 119.50, had an average width of 400 feet and an average elevation of +5 feet LWRP. The side channels experienced deposition, which provided limited connectivity to the main channel and very little bathymetric diversity. However, there was a plunge pool with depths greater than -30 feet LWRP in the main side channel caused by Dike 121.10L.

At low water there were many structures that prevented flow from passing through Moro Chute. However, if water levels were greater than +15 feet LWRP flow was able to pass through Moro Chute. Approximately 7 months of the year the side channel was dry, leaving exposed sandbars. See Figure 1 for a generalized schematic of the existing flow mechanics in the study reach.

Figure 1: Moro Chute Reach with Flow Trends

2. Study Purpose and Goals

The purpose of this study was to find a solution to enhance the environmental diversity in the Moro Island Complex and produce a report that communicated the results of the Hydraulic Sediment Response (HSR) model study.

The goals of this study were to:

- i. Investigate and provide analysis on the existing flow mechanics causing the lack of diversity.
- ii. Evaluate a variety of remedial measures utilizing an HSR model with the objective of identifying the most effective and economical plan to create a more diverse habitat in and around Moro Chute. The following 3 criteria were used to evaluate each alternative.
 - a. The alternative should enhance the environmental diversity of Moro Chute and the sandbar on the southwestern side of Moro Island.
 - b. The alternative should maintain the navigation channel requirements of at least 9 foot depth and 300 foot of width.
 - c. Maintain a side channel that can provide longer durations of connectivity between RM 122.70 and RM 120.00. (Below +10 feet LWRP)
- iii. Communicate to other engineers, river industry personnel, and environmental agency personnel the results of the HSR model tests and the plans for improvement.

3. Study Reach

The study comprised an 8 mile stretch of the Mississippi River, between RM 125.00 – 117.00 in Randolph County, IL just east of St. Genevieve, MO. The mouth of the Kaskaskia River was approximately 2.5 miles downstream from the exit of Moro Chute. An overview of the vicinity where Moro Chute is located can be seen in Plate 1.

The Moro Chute reach can be categorized as a series of 2 side channels and 2 islands. The primary side channel into Moro Chute was much deeper and narrower than the

secondary side channel. The secondary side channel was located downstream of the primary side channel. It was wider and shallower than the primary side channel. A small island was located between the primary and secondary channels of Moro Chute. The primary side channel and secondary side channel then combined at RM 122.00 to create the main side channel of Moro Chute. Between the main side channel and the Mississippi River, there was a large island called Moro Island.

A. Features and Structures

Plate 2 is a 2012 aerial photograph illustrating the planform and nomenclature of the Middle Mississippi River between RM 125.00 and RM 117.00. The city of Ste. Genevieve, MO is located along the RDB between RM 125.00 and RM 122.00. The Ste. Genevieve C&L Levee system was located along the RDB to protect the city during floods and high water events. Another levee system, Ste. Genevieve Co. L.D., begins at RM 122.00 and continues to RM 117.00. The Prairie Du Rocher D&L Levee system was located along the LDB between RM 125.00 and the Kaskaskia River (RM 3.00). The bluff line was located along the LDB downstream from the mouth of the Kaskaskia River.

At the time of this study, the reach had a total of 85 structures: 66 rock dikes, 11 weirs, 5 pile dikes, 2 notched dikes and 1 L-dike. There were two dike fields along the RDB: dike field 1 was located between RM 125.00 and RM 122.50 and dike field 2 was located between RM 119.00 and RM 116.00. Between RM 121.45 and RM 121.20, the RDB was re-aligned with stone to an elevation of +18 feet LWRP. Immediately downstream of the realignment stone, between RM 120.80 and RM 119.95, there was a weir field with the weirs having an average length of 400 feet. There was 1 dike field and 1 weir field located along the LDB. The dike field was located between RM 125.00 and RM 119.00, and the weir field was located between RM 117.50 and RM 116.00. There were three locations, each approximately 1,000 feet long, inside Moro Chute where revetment was constructed to protect the banklines from erosion. Five pile dikes were identified in the study reach, 4 were located along the LDB and 1 was located

along the RDB. For the main channel, revetment was placed on banks where dikes were absent. There was revetment along the RDB between RM 122.50 and RM 119.20 and along the LDB between RM 119.20 and RM 116.00. Refer to Table 2 for a more detailed history of the river training structures.

River Training	Length	Description	
Structures	(feet)	Description	
	120	Stone dike. Constructed before 1928.	
DIKE 125.40L	120	(Photograph 1, Plate 3)	
Diko 125 301	150	Stone dike. Constructed before 1928.	
DIRE 123.30L	150	(Photograph 2, Plate 3)	
Dike 125 30R	500	Pile dike. Structure not shown on the master plan.	
Dike 123.301	500	Constructed before 1928. (Photograph 3, Plate 3)	
Diko 124 001	560	Stone dike. Constructed between 1928 and 1939.	
DIRE 124.90L	500	(Photograph 4, Plate 3)	
Diko 124 00P	675	Stone dike. Constructed in 1985.	
DIRE 124.901		(Photograph 5, Plate 3)	
Dike 124.70L	430	Stone dike. Constructed between 1928 and 1939.	
		(Photograph 1, Plate 4)	
Dike 124.70R	500	Stone dike. Constructed in 1993 to elevation of	
		365.80 feet. (Photograph 2, Plate 4)	
Dike 121 501	760	Stone dike. Constructed between 1968 and 1976.	
DIRE 124.00L		(Photograph 3, Plate 4)	
		Stone dike. Constructed in 1900. Original dike	
Dike 121 50R	500	was 300 feet. Maintenance in 1993. Extended	
DIKE 124.301	500	200 feet. Raised to elevation of 364.7 feet (11,142	
		tons was placed). (Photograph 4, Plate 4)	
Dike 124 201	680	Stone dike. Constructed before 1928.	
DING 124.20L	000	(Photograph 1, Plate 5)	

 Table 2: Study Reach River Structure History

Moro Chute

HSR Model Report

Dike 124.20R 1,00	1 000	Stone dike. Dike constructed between 1928 and
	1,000	1939. (Photograph 2, Plate 5)
Dike 124.00L	400	Stone dike. Constructed between 1928 and 1939.
	400	(Photograph 3, Plate 5)
Diko 122 001	700	Stone dike. Constructed before 1928.
DIKE 123.90L	700	(Photograph 4, Plate 5)
		Stone dike. Constructed in 1993. Originally a pile
		dike. Offset centerline of old pile dike 20 feet
		downstream. Construct 200 feet x 80 feet x 2 feet
Dike 123.90R	575	apron downstream. Key into high bank. Raise
		250 feet of existing pile dike (degraded) then
		extend dike 100 feet to elevation of 364.4 feet.
		(Photograph 1, Plate 6)
Diko 122 70P	475	Stone dike. Constructed between 1968 and 1976.
DIKE 123.70R		(Photograph 2, Plate 6)
	700	Stone dike. Constructed before 1928. Extended
Dike 123.60L		300 feet between 1939 and 1942.
		(Photograph 4, Plate 6)
	400	Stone dike. Constructed between 1939 and 1942.
Diko 123 50P		Extended 200 feet to elevation of 364.1 feet
DIKE 123.301		between 1982 and 1986. (8,840 tons was placed).
		(Photograph 4, Plate 6)
Dike 122 401	920	Stone dike. Dike constructed before 1928.
DIKE 123.40L	830	(Photograph 1, Plate 7)
Diko 122 40P	500	Stone dike. Constructed in 1993 to elevation of
DIRE 123.401	500	364.1 feet. (Photograph 2, Plate 7)
Dike 123 201	1,260	Stone dike. Constructed between 1928 and 1939.
DIRE 123.20L		(Photograph 3, Plate 7)
Dike 123 20R	500	Stone dike. Constructed between 1968 and 1976.
DIRE 123.20K	500	(Photograph 4, Plate 7)

Moro Chute

		Stone dike. Constructed between 1928 and 1939.
Dike 123.00L	2,830	Repaired in 1989 to elevation of +10 feet LWRP.
		Original 1,350 feet long pile structure still visible.
		(Photograph 1, Plate 8)
	220	Stone dike. Constructed between 1942 and 1939.
DIKE 122.90K	330	(Photograph 2, Plate 8)
		Stone dike. Constructed in 1993. Originally a pile
		dike. Offset centerline of old pile dike 20 feet
		downstream. Construct 200 feet x 80 feet x 2 feet
Dike 122.80R	350	apron downstream. Key into high bank. Raise
		200 feet of existing pile dike (degraded) then
		extend dike 150 feet to elevation of 363.7 feet.
		(Photograph 3, Plate 8)
	50	Longitudinal Peaked Stone Toe Protection
LPSTP 122.70L		(LPSTP). There are five structures total.
		Constructed in 2008. (Photograph 1, Plate 9)
Dike 122.60R	500	Stone dike. Constructed before 1928.
	500	(Photograph 4, Plate 8)
	3,000	Stone dike. Dike constructed before 1928. Dike
Dike 122.60L		extended 2,000 feet between 1928 and 1939.
		(Photograph 1-4 on Plate 10)
Dike 122 101	1,000	Pile Dike. Constructed between 1928 and 1939.
Dire 122.10L		(Photograph 1, Plate 11)
	200	Pile Dike. Dike constructed between 1928 and
Dike 122.00L		1939 (1,000 feet). Dike shortened between 1942
		and 1968 (800 feet). (Photograph 2, Plate 9)
Dike 121 901	900	Stone Dike. Dike constructed between 1968 and
		1976. (Photograph 2, Plate 11)
Dike 121.80L	200	Stone Dike. Dike constructed between 1939 and

		1942. (Photograph 1, Plate 12)
Dike 121.70L	860	Stone Dike. Dike constructed in 1968 and 1976.
	000	(Photograph 3, Plate 11)
Dike 121 601	300	Pile Dike. Dike constructed between 1939 and
DIRE 121.00L	500	1942. (Photograph 4, Plate 12)
		Dike constructed between 1928 and 1939. Repair
Dike 121.50L	1,300	dike-line, dike-head, and round-out on (May
		1985). (Photograph 4, Plate 11)
Dike 121 /5R	800	Constructed in 1989 elevation of 10 feet LWRP.
DIRE 121.401	000	(Photograph 1, Plate 13)
Dike 121 35R	1 030	Constructed in 1989 elev. 10 feet STL.
Dike 121.00K	1,000	(Photograph 1, Plate 13)
		Constructed in 1989 elev. +10 feet STL. 06-C-
Dike 121 20R	300	0406, Restore trail dike to uniform height, 2,713
		tons, Patton-Tully, 1/30/07. (Photograph 1, Plate
		13)
Dike 121 201	Buried	Buried under sediment. Dike constructed between
DIRE 121.20L	Dulleu	1928 and 1939. (Picture not available)
		Stone Dike. Dike constructed between 1928 and
Dike 121 101	800	1939. Dike extended 400 feet and removed 550
		feet between 1942 and 1968.
		(Photograph 1, Plate 11)
Dike 121 001	1,250	Stone Dike. Dike constructed between 1928 and
DIRC 121.00L		1939. (Photograph 3, Plate 13)
Weir 120.80R	300	Weir constructed in September 1997.
Dike 120 701	530	Stone Dike. Dike constructed between 1968 and
	000	1976. (Photograph 4, Plate 13)
Weir 120.70R	310	Weir constructed in September 1997.
Weir 120.60R	476	Weir constructed in September 1997.

Weir 120.50R	559	Weir constructed in September 1997.
Dike 120.50R	-	(Photograph 2, Plate 13)
Weir 120.40R	580	Weir constructed in September 1997.
Weir 120.30R	159	Weir constructed in September 1997.
		Stone Dike. Dike constructed between 1928 and
Dike 120.20L	1,450	1939. Notched 200 feet wide at 500 feet from the
		bankline in 2011. (Photograph 1 & 2, Plate 14)
Weir 120.15R	285	Weir constructed in September 1997.
Weir 120.05R	480	Weir constructed in September 1997.
Weir 119.95R	430	Weir constructed in September 1997.
Weir 119.80R	470	Weir constructed in September 1997.
Diko 110 50	550	Stone Dike. Dike constructed between 1968 and
DIKE 119.50L	550	1976. (Photograph 3, Plate 14)
		Dike constructed between 1968 and 1976. Repair
Dike 119.50R	200	dike-head, round-out, and breach in 1985.
		(Photograph 4, Plate 14)
Diko 110 30P	330	Stone Dike. Dike constructed before 1928.
DIRE 119.301	550	(Photograph 1, Plate 15)
		Stone Dike. Dike constructed before 1928. Dike
Dike 119.20R	725	extended 300 feet between 1928 and 1939.
		(Photograph 2, Plate 15)
	1 000	Stone Dike. Dike constructed between 1928 and
DIKE 119.00K	1,000	1939. (Photograph 3, Plate 15)
		Stone Dike. Dike constructed before 1928. Dike
Dike 118.80R	1,375	was extended 200 feet between 1939 and 1968.
		(Photograph 4, Plate 15)
Diko 119 70P	1 450	Stone Dike. Dike constructed between 1928 and
	1,450	1939. (Photograph 1, Plate 16)
Dike 118.60R	1,640	Stone Dike. Dike constructed between 1928 and

		1939. (Photograph 2, Plate 16)
Dike 118.40R	1,500	Stone Dike. Dike constructed between 1928 and
		1939. (Photograph 3, Plate 16)
	2 100	Stone Dike. Dike constructed between 1928 and
DIKE I TO.SUK	2,100	1939. (Photograph 4, Plate 16)
Diko 118 10P	1 700	Stone Dike. Dike constructed between 1928 and
DIRE I TO. TUR	1,700	1939. (Photograph 1, Plate 17)
Dike 117.90R	2,750	Constructed in 1990. (Photograph 2, Plate 17)
Dike 117.60R	580	Constructed in 1990. (Photograph 3, Plate 17)
Dike 117.60R	260	Constructed in 1985. (Photograph 3, Plate 18)
		Dike constructed between 1976 and 1982. In 1990
L-Dike 117 50R	2 350	dike extended for 700 feet from the tip, facing
	2,350	downstream. A 32 feet wide notch located 1,000
		feet from the bank-line. (Photograph 4, Plate 17)
Weir 117.20L	600	Weir constructed in January 2002.
Weir 117.10L	310	Constructed in February 1993.
		Extended by 350 feet in January 2002.
Dike 117.10R	740	Constructed in 1990. (Photograph 2, Plate 18)
Weir 117 001 460	460	Constructed in February 1993.
	400	Extended by 300 feet in January 2002.
Weir 116.90L	400	Weir constructed in February 1993.
Weir 116.80L	485	Weir constructed in February 1993.
Weir 116.70L	325	Weir constructed in February 1993.
Weir 116.60L	190	Weir constructed in February 1993.
		Stone Dike. Dike constructed before 1928. Dike
Dike 116.60R	3,900	extended 1,000 feet between 1928 and 1939.
		(Photograph 4, Plate 18)
Weir 116.50L	360	Weir constructed in February 1993.
Weir 116.30L	355	Weir constructed in February 1993.

Diles 440 200	1 700	Dike constructed before 1928. Dike repaired in
DIKE 116.30K 1,700		1990. (Photograph 4, Plate 18)
Weir 116.20L	370	Weir constructed in February 1993.
Weir 116.10L	440	Weir constructed in February 1993.
Weir 116.00L	465	Weir constructed in February 1993.

B. Primary Side Channel

The entrance to the primary side channel was located downstream of Dike 122.60L. The width of the primary side channel varied between 300 and 225 feet with an average width of 250 feet. The distance from the entrance of the primary side channel to the confluence of the primary side channel and the secondary side channel was approximately 4,500 feet. During low water, a deteriorated wooden pile dike that extended off of Dike 122.60L could be seen. See Photograph 4 on Plate 10. A small island with an area of approximately 5 acres existed between the primary side channel and the secondary side channel bisected the northern point of the island. The small side channel was approximately 1,000 feet long with an entrance width of 100 feet and an exit width of 50 feet. See photograph 1 on Plate 20. At the outside bend of the primary side channel, there was a series of Longitudinal Peaked Stone Toe Protection (LPSTP) structures constructed in 2008. LPSTP incorporated hard points with toe revetment as shown in Photograph 1 on Plate 9. See Plate 20 for photographs that show the bankline before the LPSTP was constructed.

C. Secondary Side Channel

The entrance to the secondary side channel was located downstream from the entrance to the primary side channel. The secondary side channel had an average width of 1,200 feet and was approximately 3,500 feet long from the entrance at RM 122.40 to the confluence of the primary and secondary side channel at RM 122.00. Moro Island had an area of approximately 600 acres. Flow through the secondary side channel was

restricted most of the year because of sediment deposition and wide channel width. See Plate 21.

D. Main Side Channel

The main side channel began at the confluence of the primary side channel and secondary side channel at Dike 121.80L. The main side channel had a length of approximately 9,000 feet long with a width that ranges between 700 feet and 1,000 feet wide. The main side channel connected to the Mississippi River immediately downstream at Dike 120.20L. There was a large plunge pool downstream of Dike 121.10L. The main side channel was the widest at 1,100 feet at the plunge pool. See Plates 22 and 23.

E. Main Channel

There were many sandbars located along the LDB between the dike fields. Dikes 124.45R, 121.35R, and 121.20R, located along the RDB, were constructed to align the bankline and to protect against erosion. See photograph 1 on Plate 13. To maintain the navigation channel from 2000 to 2010 between RM 123.00 and RM 120.00, approximately 600,000 cubic yards was dredged at a cost of \$1.4 million. Figure 2 shows the dredge material removed per year and Plate 24 displays the dredge areas and dredge disposal locations.

Figure 2: Study Reach Dredge Removal Data

F. Real Estate

The following table shows all the property owners located along both the Illinois and Missouri sides of the study reach.

State	RM	Owner
	126.00 - 124.90	Mississippi Lime Co.
124.90 – 122.00 121.90 121.80	124.90 – 122.00	Ste. Genevieve Levee District
	121.90	JKB LLC
	Eric and Jody Lurk	
	121.70	Janet and Henry Linderer
	121.60	Beulah Loida Trust
	121.50	Roman Catholic Congregation
	121.50	Southern IL Sand Co.
Missouri	121.50 - 121.36	Janet and Brown Govreau
WISSOUT	121.35 - 121.20	Basler
	120.80	Church of Ste. Genevieve
	120.70 - 120.20	Herman and Margaret Baechle
	120.30	Wayne/Kenneth Hoog
	120.20 - 120.00	New Bourbon Regional Port Authority
	119.00	Loida Land Company
	118.00	Howard Klepzig
	117.00	Clarence T. Kertz Vol. Trust
	117.80	Paul G. Roth
	125.00	M&M Kertz Farms
	124.00	Robert and Linda Yagge
Illinois	123.00 - 120.50 &	Whitetail Way LLC
	Small island N of Moro	vinitetan vvay LLO.
Moro Island	Moro Island	Range Land Company

 Table 3: Property Owners along the Illinois and Missouri Banklines

(122.00	– 120.00)	
120.50		Alvin Yard
120.40 -	- 118.00	Glenda Zanders
South of	Kaskaskia	State of Illinois

G. Geomorphology

To understand the planform of the river near Moro Chute, an investigation was conducted on the historical changes, both man-made and natural, that lead to the present day condition. Plate 25 shows geomorphic planform changes between RM 129.00 and RM 117.00, encompassing the years from 1817 to 2011. Based on this planform comparison, in addition to historic aerial photographs and maps, it was estimated that Moro Chute did not exist until sometime between 1928 and 1939, after the sandbar in the middle of the channel meandered eastward along the LDB.

From 1817 to 1866, the average river width increased from 8,500 feet to 12,000 feet. There were 2 islands in 1817 and 4 islands in 1866 as shown on Plate 26. The island from RM 124.00 to RM 121.00 eroded considerably in size. The bankline from RM 126.00 to RM 122.00 along the Missouri side meandered westward approximately 3,000 feet. These changes occurred naturally, predating the use of river training structures in this river reach.

The river continued to undergo major changes from 1866 to 1881, as shown on Plate 27. The river widened throughout the study reach creating additional islands. The study reach went from having 4 to 10 islands. The most significant changes occurred along the RDB from RM 122.00 to RM 120.00 and along the LDB from RM 120.00 to RM 117.00. In these areas, the channel widths doubled to approximately 15,000 feet and 27,000 feet, respectively. These changes occurred naturally, predating the use of river training structures in this river reach.

From 1881 to 1908 the river continued to transform, as seen on Plate 28. The LDB between RM 124.00 and 120.00 meandered eastward approximately 9,000 feet. At this location, Moro Island was developed, and the width of its side channel was roughly 200 feet. Moro Island was roughly 1,700 acres at that time. Along the RDB between RM 119.00 and RM 116.00, the channel meandered eastward roughly 20,000 feet.

The river continued to transition from 1908 to 1928, shown on Plate 29. The Missouri bankline remained the same, but the Illinois bankline meandered westward from RM 124.00 to RM 119.00. As the channel constricted, Moro Island disappeared along with its side channel. However, there was a large sandbar located in the middle of the channel between RM 122.50 and RM 121.50 with an area of 137 acres. Along the RDB, between RM 125.00 and RM 117.00, there were 5 islands instead of 8. There were 36 river training structures built during this time.

From 1928 to 1956 the river still experienced changes to the planform, most likely due to the 40 river training structures constructed at that time. The Illinois bankline remained constant from RM 126.00 to RM 123.00. However, the bankline meandered eastward an average of 800 feet from RM 123.00 to RM 120.00 and westward an average of 500 feet from RM 123.00 to RM 117.00. The Missouri bankline remained constant from RM 121.50 to RM 119.00. However, the bankline meandered eastward an average of 2,500 feet and 3,000 feet from RM 126.00 to RM 121.50 and from RM 119.00 to RM 116.00, respectively. The number of island decreased from 5 to 3. See Plate 30. Structures built during this time included dikes and dike extensions.

There were no significant changes to the banklines throughout the study reach from 1956 to 1968, as seen on Plate 31. This was due to construction of the river training structures in previous years which locked in the basic planform of the reach. However, Moro Island was bigger but had a smaller side channel. There was a narrow side channel along the Missouri side from RM 125.00 to RM 123.00. The side channel was very narrow. In 1956, there were two Beaver Islands along the RDB between RM

119.00 and RM 116.00. In 1968, the upper Beaver Island meandered eastward and separated into 4 islands.

From 1968 to 1976 there were no major changes to the banklines throughout the study reach, as shown on Plate 32. Moro Island was broken into three separate islands, which introduced new side channels. The Kaskaskia River connected to the Mississippi at RM 117.50. There were 7 islands in 1968 and 6 islands in 1976.

There were no significant changes to the banklines throughout the study reach from 1976 to 1986, as seen on Plate 33. However along the Missouri side from RM 125.00 to RM 123.00, the side channel connected back to the main channel as seen in 1968 on Plate 31 and 32. There was an island developed along the Illinois side at RM 122.50. There were a total of two small islands located just upstream of Moro Island in 1976. Structures built during this time included dike and dike extensions. There were 6 islands in 1976 and 9 islands in 1986.

From 1986 to 2003 there were no major changes to the banklines throughout the study reach, as shown on Plate 34. There were 9 islands in 1986 and 4 islands in 2003. The side channel along the Missouri side from RM 125.00 and 123.00 was no longer connected to the main channel. All three islands located just upstream of Moro Island disappeared, thus creating a 3,000 foot wide Moro Chute. A majority of the existing revetment was placed during this time. Structures built during this time included dikes, dike extensions and weirs.

There were no significant changes or transformations of the planform from 2003 to 2011, as shown on Plate 35. There were 4 islands in 2003 and 5 islands in 2011. An island was developed at the entrance of Moro Chute, thus splitting the flow into two directions. The two secondary channels combined into one and connected back to the Mississippi River. They are called Primary Side Channel, Secondary Side Channel and Main Side Channel as mentioned above in Section 3 Part B, C and D. Plate 36-42

showed aerial maps between 1928 to 1986 overlay. These maps were overlayed on top of the 2012 aerial photograph.

A side channel analysis based on historical and recent aerial photographs and hydrographic surveys was lead by Tom Keevin and conducted by Erin Guntren (MVS personnel) in FY 2012. Their analysis looked at the area changes of side channels based on aerial photographs and the volume changes based on cross sections taken from hydrographic surveys. The results (including primary side channel, secondary side channel, and main side channel) showed that the side channels increased in size and depths while decreased in sedimentation. See Table 4 for more details. (Controlling height for connectively)

	Months	1986	2001	Percent Change
	January	76.28	63.24	-17%
	April	207.91	300.45	+44%
	July	200.11	261.01	+30%
	October	98.60	96.63	+2%
	January	825,964	318,615	-61%
Volume (YD ³)	April	3,877,536	4,319,468	+11%
	July	2,446,646	2,328,210	-4%
	October	1,055,970	528,932	-49%
	January	6.71	3.12	-53%
Mean Depth	April	11.56	8.91	+22%
(Feet)	July	7.58	5.53	-27%
	October	6.64	3.39	-48%

Table 4: Side Channel Analysis

H. Channel Characteristics and General Trends

Range line and multi-beam hydrographic surveys of the Mississippi River from 2005 to 2012 within the HSR Model extents, are shown on Plates 43-50. For this study, the bathymetric data was referenced to the Low Water Reference Plane (LWRP).

Recent surveys were used to determine general trends because they showed the most recent construction and the resultant river bed changes. The following bathymetric trends remained relatively constant from 2005 - 2012 after comparison of the above mentioned hydrographic surveys:

i. Bathymetry

Table 5: Study Reach Bathymetry Trends

River Miles	Description
125.00 – 123.00	Scour occurred off the tip of dikes along the LDB with depths as low as -40 feet LWRP. The thalweg was located along the LDB with depths between -40 feet LWRP to -15 feet LWRP. Sandbars extended out along the RDB an average of 400 feet within the dike fields.
123.00 – 122.00	Main Channel: The thalweg crossed from the LDB to the RDB with depths of approximately -8 feet LWRP. This crossing was shallow and dredging has occasionally occurred to maintain the navigational depths. A plunge pool was located behind Pile Dike 123.00L with depths as low as -15 feet LWRP.

	Side Channel: The primary and secondary side channel entrances were located along the LDB of the side channel with depths as high as +10 feet LWRP. Scour occurred along the outside bend of the primary side channel with depths of approximately -5 feet LWRP.
122.00 120.00	Main Channel: The thalweg was located along the RDB with depths between -30 feet LWRP to -10 feet LWRP. Sandbars along the LDB extended past Moro Island with an average elevation of +7 feet LWRP.
122.00 – 120.00	Side Channel: The main side channel had elevations as high as +10 feet LWRP. Scour occurred roughly 1,000 feet upstream of Dike 121.10L along the LDB in the main side channel, with average elevation of -10 feet LWRP. Downstream from Dike 121.10L, there was a 500 foot wide plunge pool with depths as low as -40 feet LWRP.
120.00 – 118.00	Main Channel: The thalweg crossed from the RDB to the LDB with depths of approximately -12 feet LWRP. Sediment deposition occurred along the LDB to RM 119.25 with elevation of +10 feet LWRP.
	Side Channel: At RM 120.00 along the LDB, the main side channel connected to the main channel. Sediment deposition occurred along the LDB with elevation of +10 feet LWRP.

	The thalweg was located along the LDB through the bend to RM
110.00 117.00	117.00, with depths as low as -45 feet LWRP. Beaver Island was
118.00 - 117.00	located along the RDB along with a side channel complex. There
	was no bathymetry data for this part of the river.

ii. Site Data

On September 19, 2012, personnel from AREC visited Moro Chute reach to examine bank lines, structures and any data that could not otherwise be gathered in the office. At the Chester, IL gage, the river stage was 1.40 feet LWRP (341.78 feet in elevation). The following observations were made:

- Primary Side Channel: Scouring occurred along the outside bend where LPSTP was constructed.
- Secondary Side Channel: There was no major erosion along either bank. The entire bed was exposed.
- Main Side Channel: The entire bed of the side channel was exposed. However, there was water in a large scour hole downstream of Dike 121.10L.
- Main Channel: Many sandbars were located along the LDB.
- Pile Dike 125.30R was visible but is not included on any hydrographic surveys. (Photograph 3, Plate 3)
- Dike 122.00L (Photograph 2, Plate 9), 122.10L (Photograph 1, Plate 11), and 121.60L (Photograph 4, Plate 12) were pile dikes.
- Dike 123.00 includes two sections. Section 1 consisted of a rock structure while part 2 consisted of a pile structure. (Photograph 1, Plate 8)

HSR MODELING

A discussion of Hydraulic Sediment Response (HSR) modeling theory is included in Appendix C.

1. Model Calibration and Replication

The HSR modeling methodology employed a calibration process designed to replicate the general conditions in the river at the time of the model study. Replication of the model was achieved during calibration and involved a three step process.

First, planform "fixed" boundary conditions of the study reach, i.e. banklines, islands, side channels, tributaries and other features were established according to the most recent available high resolution aerial photographs. Various other fixed boundaries were also introduced into the model including any channel improvement structures, underwater rock, clay and other non-mobile boundaries. These boundaries were based off of documentation (such as plans and specifications) provided by the Little Rock District.

Second, "loose" boundary conditions of the model were replicated. Bed material was introduced into the channel throughout the model to an approximate level plane. The combination of the fixed and loose boundaries served as the starting condition of the model.

Third, model tests were run using steady state discharge. Adjustment of the discharge, sediment volume, model slope, fixed boundaries, and entrance conditions were refined during these tests as part of calibration. The bed progressed from a static, flat, arbitrary bed into a fully-formed, dynamic, three dimensional mobile bed response. Repeated tests were simulated for the assurance of model stability and repeatability. When the general trends of the model bathymetry were similar to observed recent river bathymetry, and the tests were repeatable, the model was considered replicated and alternative testing began. Moro Chute

HSR Model Report

2. Scales and Bed Materials

The HSR model employed a horizontal scale of 1 inch = 800 feet, or 1: 9,600, and a vertical scale of 1 inch = 52 feet, or 1:624, for 15.4 to 1 distortion ratio of linear scales. This distortion supplied the necessary forces required for the simulation of sediment transport conditions similar to those observed in the prototype. The bed material was granular plastic urea, Type II, with a specific gravity of 1.40.

3. Appurtenances

The HSR model insert planform was constructed according to the 2012 high-resolution aerial photography of the study reach. The insert was then mounted in a standard HSR model flume. The riverbanks of the model were constructed from dense polystyrene foam, clay, and polymesh to develop proper bendway mechanics. Leveling feet in four corners of the flume controlled the slope of the model. The measured slope of the insert and flume was approximately 0.008 inch/inch. River training structures in the model were constructed of galvanized steel mesh to generate appropriate scaled roughness. Plate 51 is a photograph of the Moro Chute HSR model used in this study.

4. Flow Control

Flow into the model was regulated by customized computer hardware and software interfaced with an electronic control valve and submersible pump. This interface was used to control the flow of water and sediment into the model. For all model tests, flow entering the model was held steady at 1.15 Gallon per Minutes (GPM). This served as the average expected energy response of the river. Because of the constant variation experienced in the actual river, this steady state flow was used to replicate existing conditions and empirically analyze the ultimate expected sediment response that could occur from future alternative actions.

5. Data Collection

Data from the HSR model was collected with a three dimensional (3-D) laser scanner, Laser Doppler Velocimeter (LDV) and flow visualization. The operation of this equipment is described below.

A. <u>3D Laser Scanner</u>

The river bed in the model was surveyed with a high definition, 3D laser scanner that collects a dense cloud of xyz data points. These xyz data points were then georeferenced to real world coordinates and triangulated to create a 3D surface. The surface was then color coded by elevation using standard color tables that were also used in color coding prototype surveys. This process allowed a direct comparison between HSR model bathymetry surveys and prototype bathymetry surveys.

B. Flow Visualization

Flow visualization is a tool used to monitor the flow patterns in a HSR model. The preferred method at the Applied River Engineering Center (AREC) is to dye the water a dark color and seed the water surface with dry white sediment (Poly-Urea-grit) at the model entrance. The dry sediment floats on the top of the water surface and provides a visual representation of surface flow patterns in the model. A high definition video camera is used to record 30 seconds clips of the sediment floating throughout the study area. The recording is processed with software that reduces the original recording speed by 20%. The video speed reduction allows the viewer to more easily track the flow patterns.

6. Replication Test

Once model replication was achieved through the calibration process, the resultant bathymetry served as a benchmark for the comparison of all future model alternative tests. In this manner, the actions of any alternative, such as new channel improvement structures, realignments, side channel modifications, etc, were compared directly to the replicated condition. General trends were evaluated for any major differences, positive

or negative, between the alternative and the replication by comparing the surveys of the two and also carefully observing the model while the testing was taking place.

Bathymetric trends were recorded from the model using a 3-D laser scanner. Calibration was achieved after numerous favorable bathymetric comparisons of the prototype surveys were made to several of the model. The resultant bathymetry served as the bathymetry replication test for the model and is shown on Plate 52. Results of the HSR model replication test bathymetry and a comparison to the 2005 through 2012 prototype surveys indicated the following trends:

River Miles	Description
	The model and the prototype surveys showed scour occurred off
	of the tips of dikes located along the LDB with depths as low as -
125.00 – 123.00	40 feet LWRP. The thalweg was located along the LDB with
	depths between -15 feet LWRP and -30 feet LWRP. A sandbar
	extended out into the main channel along the RDB.
	Main Channel: The thalweg crossed from the LDB to the RDB
	with depths of approximately -10 feet LWRP in the model and
	prototype surveys.
	Side Channel: Sedimentation occurred at the primary and
123.00 – 122.00	secondary side channel entrances with depths as high as -5 feet
	LWRP in both the model and prototype survey. Further
	downstream along the side channels, depths of at least +10 feet
	LWRP were observed. Scour did not occur along the outside bend
	of the primary side channel as seen on the prototype because the
	channel was too narrow.

Table 6: Study Reach and Prototype Bathymetry Trend Comparison

	Main Channel: The thalweg was located along the RDB with
	depths between -30 feet LWRP and -10 feet LWRP in both the
	model and prototype surveys. Sandbars along the LDB extended
	past Moro Island with average elevation of +7 feet LWRP and
	scour occurred off the tips of dikes.
122.00 – 120.00	Side Channel: The main side channel had elevations as high as
	+10 feet LWRP. Scour occurred along the LDB approximately
	1,000 feet upstream from Dike 121.10L, with depths as low as -10
	feet LWRP in the prototype. However, the model showed very
	minimal scour at the same location. The plunge pool downstream
	of Dike 121.10L, with depths as low as -15 feet LWRP, was
	observed in both the model and prototype surveys.
	Main Channel: The thalweg crossed from the RDB to the LDB
	with depths approximately -15 feet LWRP in both the model and
	prototype surveys.
120.00 - 118.00	
120.00 - 110.00	Side Channel: At RM 120.00, along the LDB, the main side
	channel connected to the main channel. Sediment deposition
	occurred along the LDB to RM 119.25 with elevations of +10 feet
	LWRP.

7. Design Alternative Tests

The testing process consisted of modeling alternative measures in the HSR model followed by analyses of the bathymetry results. The goal was to enhance habitat diversity in the side channels and along the LDB of Moro Island. Evaluation of each alternative was accomplished through a qualitative comparison to the model replication test bathymetry (deposition and scouring). Only the most promising alternatives were then evaluated against model replication flow visualization.

Alternative 1:

Type of Structure	River Mile	LDB / RDB	Dimensions (Feet)	Elevation (Feet LWRP)
Shorten Dike	123.00	LDB	1,200	Existing Bed
Remove Dike	122.60	LDB	1,200	Existing Bed
Remove Pile Dike	123.00	LDB	1,700	Existing Bed
Remove Pile Dike	122.60	LDB	750	Existing Bed
Construct New Dike	122.65	LDB	1,200	+18.5
Construct New Dike	122.15	LDB	1,200	+18.5

Results: Bathymetry Analysis (Plate 53)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The new dikes directed a small
				amount of flow to the secondary
	No	No	No	side channel and caused scouring
				at the crossing between RM
No				122.50 and 121.50, while
				maintaining a relatively deep
				navigation channel.
				No sediment transport was
				observed. The primary side
				channel remained the same and
				no sediment transport was
				observed.

Alternative 2:

Turne of Structure	River		Dimensions	Elevation
Type of Structure	Mile		(Feet)	(Feet LWRP)
Shorten Dike	123.00	LDB	1,200	Existing Bed
Remove Dike	122.60	LDB	1,700	Existing Bed
Remove Pile Dike	123.00	LDB	1,200	Existing Bed
Remove Pile Dike	122.60	LDB	750	Existing Bed
Construct New Dike	122.15	LDB	1,100	+18.5

Results: Bathymetry Analysis (Plate 54)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The thalweg remained along the
				LDB between RM 123.0 and
				122.0 before crossing over to
				the RDB. Pile Dike 122.10L
				caused a deep scour hole
				adjacent to Moro Island. As a
Minimal	No	No	No	result, sedimentation occurred
				in the navigation channel at RM
				122.2. Dike 122.10L directed
				very little flow to the secondary
				side channel. No sediment
				transport was observed in the
				side channels.

Alternative 3:

Type of Structure	River Mile	LDB / RDB	Dimensions (Feet)	Elevation (Feet LWRP)
Shorten Dike	123.00	LDB	1,200	Existing Bed
Remove Pile Dike	123.00	LDB	1,200	Existing Bed

Results: Bathymetry Analysis (Plate 55)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Scour occurred off the tip of Dike 122.60L. The crossing between RM 122.50 and 121.50 experienced degradation with elevation as low as -20 feet LWRP. No sediment transport was observed in the side channels.

Alternative 4:

Type of Structure	River		Dimensions	Elevation
Type of Structure	Mile		(Feet)	(Feet LWRP)
Shorten Pile Dike	122.10	LDB	300	Existing Bed
Shorten Dike	121.90	LDB	300	Existing Bed
Shorten Dike	121.70	LDB	300	Existing Bed
Construct Rootless Dike	122.10	LDB	200	+18.5
Construct Rootless Dike	121.90	LDB	200	+18.5
Construct Rootless Dike	121.70	LDB	200	+18.5

Results: Bathymetry Analysis (Plate 55)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Yes	No	No	No	Scour occurred between notches adjacent to Moro Island. All side channels remained the same and no sediment transport was observed.

Alternative 5:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Shorten Dike	122.60	LDB	900	Existing Bed
Shorten Dike	121.90	LDB	300	Existing Bed
Shorten Dike	121.70	LDB	300	Existing Bed
Shorten Dike	121.50	LDB	300	Existing Bed
Construct Rootless Dike	121.90	LDB	200	+18.5
Construct Rootless Dike	121.70	LDB	200	+18.5
Construct Rootless Dike	121.50	LDB	200	+18.5
Extend Dike	122.80	RDB	200	+18.5
Extend Dike	122.60	RDB	320	+18.5

Results: Bathymetry Analysis (Plate 57)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Yes	No	No	No	Scour occurred between notches adjacent to Moro Island. All side channels remained the same and no sediment transport was observed.

Alternative 6:

Tuno of Structuro			Dimensions	Elevation
Type of Structure	River wille		(Feet)	(Feet LWRP)
Extend Dike	122.80	RDB	250	+18.5
Extend Dike	122.60	RDB	300	+18.5
Construct Rootless Dike	121.90	LDB	175	+18.5
Construct Rootless Dike	121.70	LDB	300	+18.5
Construct Rootless Dike	121.50	LDB	150	+18.5
Shorten Dike	122.60	LDB	400	Existing Bed
Shorten Dike	122.10	LDB	200	Existing Bed
Shorten Dike	121.90	LDB	400	Existing Bed
Shorten Dike	121.70	LDB	250	Existing Bed
Shorten Dike	121.50	LDB	225	Existing Bed

Results: Bathymetry Analysis (Plate 58)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				Scour occurred between
	No No		No	notches and adjacent to Moro
Vaa		No		Island. All side channels
res		INO		remained the same and no
				sediment transport was
				observed.

Alternative 7:

Type of Structure	River Mile	LDB / RDB	Dimensions (Feet)	Elevation (Feet LWRP)
Extend Dike	122.80	RDB	100	+18.5
Extend Dike	122.60	RDB	250	+18.5
Construct Rootless Dike	121.90	LDB	250	+18.5
Construct Rootless Dike	121.70	LDB	200	+18.5
Construct Rootless Dike	121.50	LDB	150	+18.5
Construct Rootless Dike	121.00	LDB	150	+18.5
Shorten Dike	122.60	LDB	250	Existing Bed
Shorten Dike	122.10	LDB	200	Existing Bed
Shorten Dike	121.90	LDB	220	Existing Bed
Shorten Dike	121.70	LDB	230	Existing Bed
Shorten Dike	121.50	LDB	330	Existing Bed
Shorten Dike	121.00	LDB	220	Existing Bed

Results: Bathymetry Analysis (Plate 59)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				Minimal scour occurred
		No	No	between notches and adjacent
				to Moro Island. The main
Minimal	No			channel at RM 122.00 was
winnina				shallower. All side channels
				remained the same and no
				sediment transport was
				observed.
Alternative 8:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	300	Existing Bed
Notch Dike	122.60	LDB	800	Existing Bed
Shorten Pile Dike	123.00	LDB	250	Existing Bed

Results: Bathymetry Analysis (Plate 60)

Enhanced	Enhanced	Enhanced	Enhanced		
Environmental	Environmental	Environmental	Environmental		
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments	
Adjacent to	the Primary	the Secondary	the Main Side		
Moro Chute	Side Channel	Side Channel	Channel		
				The notches directed a small	
					amount of flow to the primary
			and secondary side channe entrances, while maintaining relatively deep navigation	and secondary side channels	
				entrances, while maintaining a	
No	No	No		relatively deep navigation	
NO	NO	INO INO	NO	channel. No sediment was	
				transport was observed. All side	
				channels remained the same	
				and no sediment transport was	
				observed.	

Alternative 9:

Type of Structure			Dimensions	Elevation
Type of Structure	River Mile		(Feet)	(Feet LWRP)
Notch Dike	122.60	LDB	200	Existing Bed
Shorten Pile Dike	123.00	LDB	300	Existing Bed
Shorten Dike	122.60	LDB	1,600	Existing Bed
Construct SCED*	122.60	LDB	1,800	+18.5

Results: Bathymetry Analysis (Plate 61)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	The SCED directed a small amount of flow to the primary side channel entrance, while maintaining a relatively deep navigation channel. No sediment was transport was observed. Scour occurred off the tip of pile Dike 122.10L but has no negative impacts. All side channels remained the same and no sediment transport was observed.

Alternative 10:

	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notched Dike	123.00	LDB	340	Existing Bed
Notch Dike	122.60	LDB	425	Existing Bed
Shorten Pile Dike	123.00	LDB	300	Existing Bed
Extend Dike	122.60L	LDB	650	+18.5

Results: Bathymetry Analysis (Plate 62)

Enhanced Environmental	Enhanced Environmental	Enhanced Environmental	Enhanced Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The notches directed a small
				amount of flow to the secondary
			side channel entrances, while	
			No side channel entrances, wh maintaining a relatively de navigation channel. No sediment was transport wa	maintaining a relatively deep
No	No	No		navigation channel. No
				sediment was transport was
				observed. All side channels
				remained the same and no
				sediment transport were
				observed.

Alternative 11:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	300	Existing Bed
Notch Dike	122.60	LDB	800	Existing Bed
Shorten Pile Dike	123.00	LDB	250	Existing Bed
Shorten Dike	122.60	LDB	300	Existing Bed

Results: Bathymetry Analysis (Plate 63)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	The notches directed a small amount of flow to the secondary side channel entrance. No sediment was transport was observed. Degradation was observed at the crossing in the navigation channel between RM 122.5 and 121.5 and at the sandbar adjacent to Moro Island between RM 122.00 and 120.00. The sandbar along the RDB at RM 122.50 grew wider into the main channel. All side channels remained the same and no sediment transport were observed.

Alternative 12:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	River wille		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	200	Existing Bed
Shorten Pile Dike	123.00	LDB	200	Existing Bed
Shorten Dike	122.60	LDB	900	Existing Bed

Results: Bathymetry Analysis (Plate 64)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				Scours occurred off the tip of
				Dike 121.90L. There were no
				negative impacts to the
No	No	No	No	navigation channel. All side
				channels remained the same
				and no sediment transport was
				observed.

Alternative 13:

Type of Structure			Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	210	Existing Bed
Notch Dike	122.60	LDB	520	Existing Bed
Shorten Pile Dike	123.00	LDB	300	Existing Bed
Construct Dike	123.00	LDB	250	+18.5
Construct Dike	121.00	LDB	450	+18.5
Construct Dike	121.80	LDB	450	+18.5
Construct Dike	121.60	LDB	450	+18.5

Results: Bathymetry Analysis (Plate 65)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The notches directed a small
				amount of flow to the primary
				and secondary side channels.
				Degradation occurred at the
				sandbar adjacent to Moro Island
Minimal	No	No	No	between RM 122.00 and
				120.00. No negative impacts on
				the navigation channel. All side
				channels remained the same
				and no sediment transport was
				observed.

Alternative 14:

Type of Structure	Divor Milo			Elevation
Type of Structure	River wille		(Feet)	(Feet LWRP)
Shorten Dike	123.00	LDB	1,400	Existing Bed
Shorten Dike	122.60	LDB	900	Existing Bed
Shorten Pile Dike	122.10	LDB	220	Existing Bed
Remove Pile Dike	123.00	LDB	1,350	Existing Bed
Construct SCED	122.10	LDB	1,550	+18.5

Results: Bathymetry Analysis (Plate 66)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	The SCED directed niminal flow to the secondary side channel and caused a huge scour hole along the LDB between RM 122.4 and 122.0. The sandbar along the RDB at RM 121.80 was increase in size. Degradation occurred along the LDB at Moro Island between RM 122.00 and 120.00. No bathymetric change to all of the side channels and no sediment transport was observed.

Alternative 15:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	River wille		(Feet)	(Feet LWRP)
Remove Pile Dike	123.00	LDB	1,350	Existing Bed
Shorten Dike	123.00	LDB	1,400	Existing Bed
Shorten Dike	122.60	LDB	900	Existing Bed
Shorten Pile Dike	122.10	LDB	175	Existing Bed
Construct SCED	122.10	LDB	1,850	+18.5
Construct Dike	122.50	LDB	720	+18.5
Construct Dike	122.20	LDB	540	+18.5
Construct Dike	121.90	LDB	430	+18.5

Results: Bathymetry Analysis (Plate 67)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Ne	Ne	Ne	Ne	This alternative shares similar
INO	INO	INO	INO	results to Alternative 14.

Alternative 16:

			Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Remove Pile Dike	123.00	LDB	1,350	Existing Bed
Remove Dike	122.60	LDB	1,800	Existing Bed
Shorten Dike	123.00	LDB	1,400	Existing Bed
Construct SCED	122.10	LDB	1,850	+18.5
Construct Dike	122.50	LDB	720	+18.5
Construct Dike	122.20	LDB	540	+18.5
Construct Dike	121.90	LDB	430	+18.5

Results: Bathymetry Analysis (Plate 68)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Na	Na	Na	Na	This alternative shares similar
INO	No No No		INO	results to Alternative 14.

Alternative 17:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	of Structure River Mile LDB/		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	400	Existing Bed
Shorten Pile Dike	123.00	LDB	350	Existing Bed
Construct Diverter Dike	122.60	LDB	1,450	+18
Remove Dike	122.60	LDB	1,800	Existing Bed
Extend Dike	123.00	LDB	200	+18

Results: Bathymetry Analysis (Plate 69)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	The diverter dike directed a small amount of flow to the primary and secondary side channels. No sediment was transport was observed. Degradation occurred at the sandbar located along the LDB between RM 122.00 and 120.00. There are no negative impacts to the navigation channel, no bathymetric changes to all side channels, and no sediment transport was observed.

Alternative 18:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	300	Existing Bed
Remove Pile Dike	123.00	LDB	1350	Existing Bed
Remove Pile Dike	122.60	LDB	800	Existing Bed
Remove Dike	122.60	LDB	1800	Existing Bed
Extend Dike	123.00	LDB	250	+18.5
Extend Dike	121.80	LDB (SSC)	1,450	+18.5
Construct Diverter Dike	122.60	LDB	1,100	+18.5
Construct Dike	122.10	LDB	700	+18.5
Construct Dike	121.90	LDB (SSC)	575	+18.5
Construct Dike	121.70	LDB (SSC)	550	+18.5
Construct Dike	121.35	RDB (MSC)	250	+18.5
Construct Dike	120.80	RDB (MSC)	150	+18.5
Construct Dike	120.80	LDB (MSC)	300	+18.5
Construct Dike	120.60	Moro Chute	440	+18.5
Construct Dike	120.20	Moro Chute	440	+18.5
Construct Rootless Dike	122.05	LDB (SSC)	325	+18.5
Construct Rootless Dike	121.95	LDB (SSC)	325	+18.5

SSC: Secondary Side Channel

MSC: Main Side Channnel

Results: Bathymetry Analysis (Plate 70)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Results similar to Alternative 17.

Alternative 19:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure			(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	300	Existing Bed
Remove Pile Dike	123.00	LDB	1,350	Existing Bed
Remove Pile Dike	122.60	LDB	800	Existing Bed
Remove Dike	122.60	LDB	1800	Existing Bed
Extend Dike	123.00	LDB	250	+18.5
Extend Dike	121.80	LDB (SSC)	450	+18.5
Construct Dike	122.10	LDB	1,150	+18.5
Construct Dike	122.40	LDB (SSC)	1,100	+18.5
Construct Dike	121.90	LDB	575	+18.5
Construct Dike	121.70	LDB (SSC)	550	+18.5
Construct Dike	121.35	RDB (MSC)	250	+18.5
Construct Dike	120.80	RDB (MSC)	150	+18.5
Construct Dike	120.80	LDB (MSC)	300	+18.5
Construct Dike	120.60	LDB (MSC)	440	+18.5
Construct Dike	120.20	LDB (MSC)	440	+18.5
Construct Rootless Dike	121.20	LDB (SSC)	325	+18.5
Construct Rootless Dike	121.00	LDB (SSC)	325	+18.5

SSC: Secondary Side Channel

MSC: Main Side Channnel

Results: Bathymetry Analysis (Plate 71)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Dike 122.10L directed a small amount of flow to the secondary side channel. No sediment transport was observed. Degradation occurred at the sandbar located along the LDB between RM 122.00 and 120.00. There are no negative impacts to the navigation channel, no bathymetric changes to all side channels, and no sediment transport was observed.

Alternative 20:

	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	123.00	LDB	300	Existing Bed
Remove Pile Dike	123.00	LDB	1,350	Existing Bed
Remove Dike	122.60	LDB	1,800	Existing Bed
Extend Dike	123.00	LDB	300	+18.5
Construct SCED*	122.50	LDB	1,160	+18.5

Results: Bathymetry Analysis (Plate 72)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The SCED directed a small
				amount of flow in the primary
				side channel. No sediment
				transport was observed.
				Degradation occurred at the
				sandbar located along the LDB
No	No	No	No	between RM 122.00 and
				120.00. There are no negative
				impacts to the navigation
				channel, no bathymetric
				changes to all of the side
				channels, and no sediment
				transport was observed.

Alternative 21:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	River wine		(Feet)	(Feet LWRP)
Notch Dike	123.0	LDB	300	Existing Bed
Remove Pile Dike	123.0	LDB	1,350	Existing Bed
Remove Dike	122.6	LDB	1,800	Existing Bed
Extend Dike	123.0	LDB	300	+18.5
Construct SCED*	122.5	LDB	1,160	+18.5

Results: Bathymetry Analysis (Plate 73)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Results similar to Alternative 20.

Alternative 22:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Pile Dike	122.10	LDB	300	Existing Bed
Shorten Dike	121.90	LDB	200	Existing Bed
Shorten Dike	121.70	LDB	120	Existing Bed
Shorten Dike	121.50	LDB	225	Existing Bed
Shorten Dike	121.20	LDB	150	Existing Bed
Construct Rootless Dike	121.90	LDB	250	+18.5
Construct Rootless Dike	121.70	LDB	250	+18.5
Construct Rootless Dike	121.50	LDB	250	+18.5
Construct Rootless Dike	121.20	LDB	250	+18.5
Construct Rootless Dike	121.00	LDB	250	+18.5

Results: Bathymetry Analysis (Plate 74)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The notches created scour and
				diversity at the sandbar
				adjacent to Moro Chute
				between RM 122.00 and RM
Yes	No	No	No	121.00. The sandbar along the
				RDB developed further
				downstream to RM 121.80 thus
				constriction the navigation
				channel around RM 122.00.

Alternative 23:

Tuno of Structuro	Divor Milo		Dimensions	Elevation
Type of Structure	River wille		(Feet)	(Feet LWRP)
Shorten Pile Dike	122.10	LDB	625	Existing Bed
Shorten Dike	121.90	LDB	220	Existing Bed
Shorten Dike	121.70	LDB	120	Existing Bed
Shorten Dike	121.50	LDB	300	Existing Bed
Shorten Dike	121.20	LDB	140	Existing Bed
Shorten Dike	121.00	LDB	300	Existing Bed
Construct Rootless Dike	121.90	LDB	250	+18.5
Construct Rootless Dike	121.70	LDB	250	+18.5
Construct Rootless Dike	121.50	LDB	250	+18.5
Construct Rootless Dike	121.20	LDB	250	+18.5
Construct Rootless Dike	121.00	LDB	250	+18.5

Results: Bathymetry Analysis (Plate 75)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The notches created scours and
				diversity at the sandbar
				adjacent to Moro Chute
				between RM 122.00 and RM
				121.00. The sandbar along the
Yes	No	No	No	RDB at RM 121.80 was
				increase in size. There are no
				bathymetric changes to all of
				the side channels and no
				sediment transport was
				observed.

Alternative 24:

Type of Structure	Divor Milo			Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Shorten Pile Dike	122.10	LDB	400	Existing Bed
Shorten Dike	121.90	LDB	250	Existing Bed
Shorten Dike	121.70	LDB	240	Existing Bed
Shorten Dike	121.50	LDB	200	Existing Bed
Shorten Dike	121.00	LDB	200	Existing Bed
Construct Rootless Dike	121.90	LDB	175	+18.5
Construct Rootless Dike	121.70	LDB	175	+18.5
Construct Rootless Dike	121.50	LDB	175	+18.5
Construct Rootless Dike	121.20	LDB	175	+18.5
Construct Rootless Dike	121.00	LDB	175	+18.5

Results: Bathymetry Analysis (Plate 76)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Minimal	No	No	No	Results similar to Alternative 23.

Alternative 25:

Tupo of Structuro			Dimensions	Elevation
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	122.10	LDB	600	Existing Bed
Notch Dike	121.90	LDB	300	Existing Bed
Notch Dike	121.70	LDB	275	Existing Bed
Notch Dike	121.50	LDB	425	Existing Bed

Results: Bathymetry Analysis (Plate 77)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Results similar to replication
INU	INU	INU	INU	test.

Alternative 26:

Type of Structure River Mile I DB / RDB		Dimensions	Elevation	
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	122.10	LDB	530	Existing Bed
Notch Dike	121.90	LDB	220	Existing Bed
Notch Dike	121.70	LDB	380	Existing Bed
Notch Dike	121.50	LDB	450	Existing Bed
Notch Dike	123.00	LDB	280	Existing Bed
Shorten Pile	123.00	LDB	300	Existing Bed
Shorten Dike	122.60	LDB	800	Existing Bed

Results: Bathymetry Analysis (Plate 78)

Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
No	No	No	No	Degradation occurred at the primary and secondary side channel entrances and Moro Island along the LDB between RM 123.00 and 121.00. Scour occurred off the tip of Notched Dike 121.90L. There are no negative impacts to the navigation channel, no bathymetric changes to all of the side channels, and no sediment transport was observed.

Alternative 27:

Type of Structure River Mile I DB / RDB		Dimensions	Elevation	
Type of Structure	Riveriville		(Feet)	(Feet LWRP)
Notch Dike	122.10	LDB	530	Existing Bed
Notch Dike	121.90	LDB	220	Existing Bed
Notch Dike	121.70	LDB	380	Existing Bed
Notch Dike	121.50	LDB	450	Existing Bed
Notch Dike	123.00	LDB	280	Existing Bed
Shorten Pile	123.00	LDB	300	Existing Bed
Shorten Dike	122.60	LDB	1600	Existing Bed
Remove Pile Dike	122.60	LDB	800	Existing Bed

Results: Bathymetry Analysis (Plate 79)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				The sandbar along the LDB
				experience degradation
				between RM 123.00 and RM
				121.00. There are no negative
No	No	No	No	impacts to the navigation
				channel, no bathymetric
				changes to all of the side
				channels, and no sediment
				transport was observed.

Alternative 28:

Type of Structure	Divor Milo		Dimensions	Elevation
Type of Structure	River Mille		(Feet)	(Feet LWRP)
Construct Rootless Dike	122.10	LDB	200	+18.5
Construct Rootless Dike	121.90	LDB	200	+18.5
Construct Rootless Dike	121.70	LDB	200	+18.5
Construct Rootless Dike	121.50	LDB	200	+18.5
Shorten Pile Dike	123.00	LDB	300	Existing Bed
Shorten Dike	122.60	LDB	900	Existing Bed
Shorten Dike	122.10	LDB	350	Existing Bed
Shorten Dike	121.90	LDB	200	Existing Bed
Shorten Dike	121.70	LDB	100	Existing Bed
Shorten Dike	121.50	LDB	220	Existing Bed
Notch Dike	123.00	LDB	280	Existing Bed

Results: Bathymetry Analysis (Plate 80)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
				Degradation occurred at the
				primary and secondary side
				channel entrances and Moro
				Island along the LDB between
				RM 123.00 and 121.00. The
Yes	No	No	No	notches created scours and
				diversity along the LDB
				between RM 122.00 and
				121.00. Degradation occurred
				along the LDB between Dike
				123.00L and 122.10L.

Alternative 29:

Type of Structure	River Mile	I DB / RDB	Dimensions	Elevation
			(Feet)	(Feet LWRP)
Shorten Dike	122.10	LDB	350	Existing Bed
Shorten Dike	121.90	LDB	200	Existing Bed
Shorten Dike	121.70	LDB	100	Existing Bed
Shorten Dike	121.50	LDB	220	Existing Bed
Construct Rootless	121.10	LDB	200	+18.5
Construct Rootless	121.90	LDB	200	+18.5
Construct Rootless	121.70	LDB	200	+18.5
Construct Rootless	121.50	LDB	200	+18.5
Notch Dike	123.00	LDB	280	Existing Bed
Notch Dike	122.60	LDB	280	Existing Bed
Shorten Pile	123.00	LDB	300	Existing Bed

Results: Bathymetry Analysis (Plate 81)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
	No	No		The notches created scour and
			No	diversity along the LDB
Yes				between RM 123.00 and
				121.00. Degradation occurred
				along the LDB between Dike
				123.00L and 122.10L.

Alternative 30:

				Elevation
Type of Structure	River Mile	LDB / RDB	Dimensions (Feet)	(Feet
				LWRP)
Shorten Dike	122.10	LDB	350	Existing Bed
Shorten Dike	121.90	LDB	200	Existing Bed
Shorten Dike	121.70	LDB	100	Existing Bed
Shorten Dike	121.50	LDB	220	Existing Bed
Notch Dike	122.60	LDB	250	Existing Bed
Construct Rootless	121.10	LDB	200	+18
Construct Rootless	121.90	LDB	200	+18
Construct Rootless	121.70	LDB	200	+18
Construct Rootless	121.50	LDB	200	+18

Results: Bathymetry Analysis (Plate 82)

Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in	Diversity in	Additional Comments
Adjacent to	the Primary	the Secondary	the Main Side	
Moro Chute	Side Channel	Side Channel	Channel	
Yes	No	No		The notches created scour and
			No	diversity along the LDB
				between RM 122.50 and
				121.00. Degradation occurred
				along the LDB between Dike
				123.00L and 122.10L.

Alternative 31:

Type of Structure	River Mile	LDB / RDB	Dimensions (Feet)	Elevation (Feet LWRP)
New Side Channel	123.00	LDB	3,200 by 150	Existing Bed

Results: Bathymetry Analysis (Plate 83)

Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	Additional Comments
Environmental	Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in the	Diversity in the	Diversity in the	
Adjacent to	the Primary	Secondary Side	Main Side	New Side	
Moro Chute	Side Channel	Channel	Channel	Channel	
No	No	No	No	No	A small amount of flow was directed to the new side channel. Scour occurred at the entrance and continued downstream for 100 feet.

Alternative 32:

Type of Structure River Mile LDB / RD		LDB / RDB	Dimensions (Feet)	Elevation (Feet LWRP)	
New Side Channel	123.00	LDB	3,200 by 150	Existing Bed	
Shorten Dike	123.20	LDB	300	Existing Bed	

Results: Bathymetry Analysis (Plate 84)

Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in the	Diversity in the	Diversity in the	Additional Comments
Adjacent to	the Primary	Secondary Side	Main Side	New Side	
Moro Chute	Side Channel	Channel	Channel	Channel	
No	No	No	No	No	A small amount of flow
					was directed to the new
					side channel. Scour
					occurred at the entrance
					and continued
					downstream for 100 feet.

Alternative 33:

Type of Structure River Mile LDB / RD			Dimensions	Elevation
			(Feet)	(Feet LWRP)
New Side Channel	123.00	LDB	3200 by 150	-10
Shorten Dike	123.20	LDB	300	-10
Construct Dike	123.10	LDB	450	+18

Results: Bathymetry Analysis (Plate 85)

Enhanced	Enhanced	Enhanced	Enhanced	Enhanced	
Environmental	Environmental	Environmental	Environmental	Environmental	
Diversity	Diversity in	Diversity in the	Diversity in the	Diversity in the	Additional Comments
Adjacent to	the Primary	Secondary Side	Main Side	New Side	
Moro Chute	Side Channel	Channel	Channel	Channel	
No	No	No	No	No	A small amount of flow
					was directed to the new
					side channel. Scour
					occurred at the entrance
					and continued
					downstream for 100 feet.

CONCLUSIONS

1. Evaluation and Summary of the Model Tests

In order to determine the best alternative, certain criteria, based on the study purpose and goals, were used to evaluate each alternative. The first and most important consideration was that the alternative had to enhance habitat diversity in the side channels and along the LDB of Moro Island. The second condition was that the alternative had to maintain the navigation channel requirements of at least 12 foot of depth and 300 foot of width. The third condition was that the alternative should avoid and minimize negative impacts to environmental features within the reach. Although there were a number of alternatives that showed minimal improvements in enhancing the LDB of Moro Island while maintaining the navigation channel requirements, they were not recommended. These alternatives were not recommended primarily because they caused deposition in the navigation channel. Some of the alternatives that met the criterion but were not chosen were alternatives 6, 7 and 22.

Alternative	Enhanced Environmental Diversity Adjacent to	Enhanced Environmental Diversity in the Primary Side	Enhanced Environmental Diversity in the Secondary Side	Enhanced Environmental Diversity in the Main Side
	Moro Chute	Channel	Channel	Channel
1	No	No	No	No
2	Minimal	No	No	No
3	No	No	No	No
4	Yes	No	No	No
5	Yes	No	No	No
6	Yes	No	No	No
7	Minimal	No	No	No
8	No	No	No	No
9	No	No	No	No

Table 7: Summary of Test Results

Moro Chute HSR Model Report

10	No	No	No	No
11	No	No	No	No
12	No	No	No	No
13	Minimal	No	No	No
14	No	No	No	No
15	No	No	No	No
16	No	No	No	No
17	No	No	No	No
18	No	No	No	No
19	No	No	No	No
20	No	No	No	No
21	No	No	No	No
22	Yes	No	No	No
23	Yes	No	No	No
24	Minimal	No	No	No
25	No	No	No	No
26	No	No	No	No
27	No	No	No	No
28	Yes	No	No	No
29	Yes	No	No	No
30	Yes	No	No	No
31	No	No	No	No
32	No	No	No	No
33	No	No	No	No

2. <u>Recommendations</u>

Alternative 29, Plate 81, was recommended as the most desirable alternative because of its ability to enhance the habitat diversity at and around Moro Island, while having no significant impacts on the navigation channel. Bathymetry results showed that along the LDB, between RM 122.0 and 121.0, scour occurred at the notches. As a result, a secondary channel was created.

The goal to enhance the habitat diversity at Moro Island Complex involved increasing the flow and sediment transport through the side channels. However, the location of the primary side channel entrance being blocked by structures and the natural planform of the river made the task nearly impossible. The width of the secondary side channel was also a problem. Therefore, the approach taken in the recommended alternative was to create a secondary channel on the western side of Moro Island with river training structures. Overall, this alternative would enhance the habitat diversity and maintain the navigation channel near Moro Island.

The recommended design included the following:

- Shorten Pile Dike 123.00L
 - Shorten pile dike 300 feet
 - o Shorten pile dike will be to existing bed elevation
- Shorten Dike 122.10L
 - o Shorten dike 350 feet long
 - Shorten pile dike will be to existing bed elevation
- Shorten Dike 121.90L
 - Shorten dike 200 feet long
 - Shorten pile dike will be to existing bed elevation
- Shorten Dike 121.70L
 - Shorten dike 100 feet long
 - o Shorten pile dike will be to existing bed elevation
- Shorten Dike 121.50L
 - Shorten dike 220 feet long
 - o Shorten pile dike will be to existing bed elevation
- Construct Rootless Dike 121.10L
 - Construct rootless dike 200 feet long

- Construct rootless dike to elevation of +18.5 feet LWRP
- Construct Rootless Dike 121.90L
 - Construct rootless dike 200 feet long
 - Construct rootless dike to elevation of +18.5 feet LWRP
- Construct Rootless Dike 121.70L
 - o Construct rootless dike 200 feet long
 - Construct rootless dike to elevation of +18.5 feet LWRP
- Construct Rootless Dike 121.50L
 - Construct rootless dike 200 feet long
 - Construct rootless dike to elevation of +18.5 feet LWRP
- Notch Dike 123.00L
 - Notch dike 280 feet long
 - Notch dike will be to existing bed elevation
- Notch Dike 122.60L
 - Notch dike 280 feet long
 - Notch dike will be to existing bed elevation

3. Interpretation of Model Test Results

In the interpretation and evaluation of the model test results, it should be remembered that these results are qualitative in nature. Any hydraulic model, whether physical or numerical, is subject to biases introduced as a result of the inherent complexities that exist in the prototype. Anomalies in actual hydrographic events, such as prolonged periods of high or low flows are not reflected in these results, nor are complex physical phenomena, such as the existence of underlying rock formations or other non-erodible variables. Water surfaces were not analyzed and flood flows were not simulated in this study.

This model study was intended to serve as a tool for the river engineer to guide in assessing the general trends that could be expected to occur in the Mississippi River from a variety of imposed design alternatives. Measures for the final design may be Moro Chute Page 68 St. Louis District HSR Model Report

modified based upon engineering knowledge and experience, real estate and construction considerations, economic and environmental impacts, or any other special requirements.

FOR MORE INFORMATION

For more information about HSR modeling or the Applied River Engineering Center, please contact Ivan Nguyen, Robert Davinroy, P.E. or Jasen Brown, P.E. at:

Applied River Engineering Center U.S. Army Corps of Engineers - St. Louis District Hydrologic and Hydraulics Branch Foot of Arsenal Street St. Louis, Missouri 63118

Phone: (314) 865-6326, (314) 865-6322, or (314) 865-6358 Fax: (314) 865-6352

> E-mail: <u>Robert.D.Davinroy@usace.army.mil</u> <u>Jasen.L.Brown@usace.army.mil</u> Ivan.H.Nguyen@usace.army.mil

Or you can visit us on the World Wide Web at: http://mvs-wc.mvs.usace.army.mil/arec/index.html

APPENDIX

1. <u>Report Plates</u>

Plate	1	Moro Chute Location and Vicinity
Plate	2	Moro Chute Planform and Nomenclature 2012 Aerial Photographs
Plate	3	September 19, 2012 Moro Chute Field Visit Part 1
Plate	4	September 19, 2012 Moro Chute Field Visit Part 2
Plate	5	September 19, 2012 Moro Chute Field Visit Part 3
Plate	6	September 19, 2012 Moro Chute Field Visit Part 4
Plate	7	September 19, 2012 Moro Chute Field Visit Part 5
Plate	8	September 19, 2012 Moro Chute Field Visit Part 6
Plate	9	September 19, 2012 Moro Chute Field Visit Part 7
Plate	10	September 19, 2012 Moro Chute Field Visit Part 8
Plate	11	September 19, 2012 Moro Chute Field Visit Part 9
Plate	12	September 19, 2012 Moro Chute Field Visit Part 10
Plate	13	September 19, 2012 Moro Chute Field Visit Part 11
Plate	14	September 19, 2012 Moro Chute Field Visit Part 12
Plate	15	September 19, 2012 Moro Chute Field Visit Part 13
Plate	16	September 19, 2012 Moro Chute Field Visit Part 14
Plate	17	September 19, 2012 Moro Chute Field Visit Part 15
Plate	18	September 19, 2012 Moro Chute Field Visit Part 16
Plate	19	Moro Chute Primary and Secondary Entrance Photographs
Plate	20	Moro Chute Primary Entrance 2001 Photographs
Plate	21	Dike 120.20L & Dike 121.10L 2001 Photographs
Plate	22	Dike 122.60L & Dike 121.60L 2001 Photographs
Plate	23	Main Side Channel 2001 Photographs
Plate	24	Dredge Cut & Placement 2012 Aerial Photograph
Plate	25	Moro Chute Geomorphology (1817 - 2011) 2012 Aerial Photograph
Plate	26	Geomorphology 1817-1866 2012 Aerial Photograph

Plate	27	Geomorphology 1866-1881 2012 Aerial Photograph
Plate	28	Geomorphology 1881-1908 2012 Aerial Photograph
Plate	29	Geomorphology 1908-1928 2012 Aerial Photograph
Plate	30	Geomorphology 1928-1956 2012 Aerial Photograph
Plate	31	Geomorphology 1956-1968 2012 Aerial Photograph
Plate	32	Geomorphology 1968-1976 2012 Aerial Photograph
Plate	33	Geomorphology 1976-1986 2012 Aerial Photograph
Plate	34	Geomorphology 1986-2003 2012 Aerial Photograph
Plate	35	Geomorphology 2003-2011 2012 Aerial Photograph
Plate	36	1928 Aerial Photograph And 2012 Aerial Photograph
Plate	37	1956 Survey Overlay 2012 Aerial Photograph
Plate	38	Historic Map Overlay July 1, 1941 2012 Aerial Photograph
Plate	39	1968 Survey Overlay 2012 Aerial Photograph
Plate	40	1976 Survey Overlay 2012 Aerial Photograph
Plate	41	1982 Survey Overlay 2012 Aerial Photograph
Plate	42	1986 Survey Overlay 2012 Aerial Photograph
Plate	43	2005 Hydro Survey 2012 Aerial Photograph
Plate	44	Nov 21, 2007 Hydro Survey 2012 Aerial Photograph
Plate	45	Sept 2, 2010 Main Channel May 4, 2011 Side Channel
Plate	46	July 7, 2012 Main Channel May 4, 2011 Side Channel
Plate	47	September 10, 2009 Pre-Dredge Survey 2012 Aerial Photograph
Plate	48	November 5, 2010 Pre-Dredge Survey 2012 Aerial Photograph
Plate	49	September 28, 2011 Pre-Dredge Survey 2012 Aerial Photograph
Plate	50	September 18, 2012 Pre-Dredge Survey 2012 Aerial Photograph
Plate	51	Moro Chute HSR Model Photograph
Plate	52	Hydrographic Survey vs. Replication
Plate	53	Replication vs. Alternative 1
Plate	54	Replication vs. Alternative 2
Plate	55	Replication vs. Alternative 3
Plate	56	Replication vs. Alternative 4
-------	----	--------------------------------
Plate	57	Replication vs. Alternative 5
Plate	58	Replication vs. Alternative 6
Plate	59	Replication vs. Alternative 7
Plate	60	Replication vs. Alternative 8
Plate	61	Replication vs. Alternative 9
Plate	62	Replication vs. Alternative 10
Plate	63	Replication vs. Alternative 11
Plate	64	Replication vs. Alternative 12
Plate	65	Replication vs. Alternative 13
Plate	66	Replication vs. Alternative 14
Plate	67	Replication vs. Alternative 15
Plate	68	Replication vs. Alternative 16
Plate	69	Replication vs. Alternative 17
Plate	70	Replication vs. Alternative 18
Plate	71	Replication vs. Alternative 19
Plate	72	Replication vs. Alternative 20
Plate	73	Replication vs. Alternative 21
Plate	74	Replication vs. Alternative 22
Plate	75	Replication vs. Alternative 23
Plate	76	Replication vs. Alternative 24
Plate	77	Replication vs. Alternative 25
Plate	78	Replication vs. Alternative 26
Plate	79	Replication vs. Alternative 27
Plate	80	Replication vs. Alternative 28
Plate	81	Replication vs. Alternative 29
Plate	82	Replication vs. Alternative 30
Plate	83	Replication vs. Alternative 31
Plate	84	Replication vs. Alternative 32

Plate	85	Replication vs. Alternative 33
		•

2. Meeting Minutes

9/13/ Mest	-WG
NAME	AGENCY
MIKE RUDGEORS	USACE
Tim Lawth	USALE
Ashley Cox	USALE
BRAD KRISCHEL	USACE
Bernie Heroff	ARTCO
Dave Osten dorf	MOC
Dave Knuth	MPC
Shannon Hughes	Kirby
KEN Coole	USACE
MATT MANGAN	USFNS
Donougn Henry	USFUS
PAUL RHOMDES	USACE
Butch Atwood	IL DNR
Dawrlamm	USACE
Eddie Brown	USACE
FRANCIS WALTON	USACE
Brian Johnson	USACE

Figure 3: September 18, 2013 Model Meeting Sign-in Sheet

3. Cross Section Comparison

To verify the predictive capabilities of the HSR model used for this study, cross sections were developed for the replication model condition and three prototype bathymetries, the 2007, 2010 and 2012 river surveys.

Cross	Area Without Correction		Corrected Area		
Section	Model	2007	True Model	True 2007	Percent
Station	Replication	Survey	Replication	Survey	Difference
	(feet ²)	(feet ²)	(feet ²)	(feet ²)	
40+00	630,652	623,707	42,043	41,580	1.11%
60+00	627,436	616,407	41,829	41,094	1.77%
80+00	609,142	677,425	40,609	45,162	10.61%
100+00	647,001	732,863	43,133	48,858	12.45%
120+00	612,911	632,241	40,861	42,149	3.10%
140+00	689,317	702,288	45,954	46,819	1.86%
160+00	586,390	563,642	39,093	37,576	3.96%
180+00	626,411	517,701	41,761	34,513	19.00%
200+00	624,400	513,723	41,627	34,248	19.45%
220+00	571,740	547,984	38,116	36,532	4.24%
240+00	590,877	571,783	39,392	38,119	3.28%
260+00	535,836	519,404	35,722	34,627	3.11%
280+00	523,525	519,448	34,902	34,630	0.78%
360+00	616,080	637,179	41,072	42,479	3.37%
380+00	650,314	633,093	43,354	42,206	2.68%
400+00	685,703	681,567	45,714	45,438	0.60%
				Average	5.7

 Table 8: Cross Section Comparison Model Replication Scan and 2007 Bathymetry

Cross	Area Without Correction		Corrected Area		_
Section	Model	2010	True Model	True 2010	Percent
Station	Replication	Survey	Replication	Survey	Difference
	(feet ²)	(feet ²)	(feet ²)	(feet ²)	
40+00	630,652	698,522	42,043	46,568	10.2%
60+00	627,436	704,917	41,829	46,994	11.6%
80+00	609,142	757,907	40,609	50,527	21.8%
100+00	647,001	880,713	43,133	58,714	30.6%
120+00	612,911	690,397	40,861	46,026	11.9%
140+00	689,317	623,423	45,954	41,562	10.0%
160+00	586,390	474,225	39,093	31,615	21.2%
180+00	626,411	491,225	41,761	32,748	24.2%
200+00	624,400	494,295	41,627	32,953	23.3%
220+00	571,740	508,160	38,116	33,877	11.8%
240+00	590,877	545,843	39,392	36,390	7.9%
260+00	535,836	491,836	35,722	32,789	8.6%
280+00	523,525	473,799	34,902	31,587	10.0%
360+00	616,080	667,313	41,072	44,488	8.0%
380+00	650,314	649,997	43,354	43,333	0.0%
400+00	685,703	668,595	45,714	44,573	2.5%
				Average	13.3

 Table 9: Cross Section Comparison Model Replication Scan and 2010 Bathymetry

Table 10: Cross Section Comparison Model Replication Scan and 2012Bathymetry

Cross	Area Without Correction		Correct		
Section	Model	20125	True Model	True 2012	Percent
Station	Replication	20123ulvey	Replication	Survey	Difference
Station	(feet ²)	(leet-)	(feet ²)	(feet ²)	
40+00	630,652	673,201	42,043	44,880	6.5%
60+00	627,436	705,123	41,829	47,008	11.7%
80+00	609,142	717,098	40,609	47,807	16.3%
100+00	647,001	809,092	43,133	53,939	22.3%
120+00	612,911	651,182	40,861	43,412	6.1%
140+00	689,317	654,808	45,954	43,654	5.1%
160+00	586,390	570,900	39,093	38,060	2.7%
180+00	626,411	571,943	41,761	38,130	9.1%
200+00	624,400	567,785	41,627	37,852	9.5%
220+00	571,740	564,749	38,116	37,650	1.2%
240+00	590,877	527,643	39,392	35,176	11.3%
260+00	535,836	501,700	35,722	33,447	6.6%
280+00	523,525	502,045	34,902	33,470	4.2%
360+00	616,080	570,757	41,072	38,050	7.6%
380+00	650,314	597,286	43,354	39,819	8.5%
400+00	685,703	644,669	45,714	42,978	6.2%
				Average	8.4

Cross	Area Without Correction		Correct		
Section	2007	2010	True 2007	True 2010	Percent
Station	Survey	Survey	Survey	Survey	Difference
Station	(feet ²)	(feet ²)	(feet ²)	(feet ²)	
40+00	623,707	698,522	41,580	46,568	11.3%
60+00	616,407	704,917	41,094	46,994	13.4%
80+00	677,425	757,907	45,162	50,527	11.2%
100+00	732,863	880,713	48,858	58,714	18.3%
120+00	632,241	690,397	42,149	46,026	8.8%
140+00	702,288	623,423	46,819	41,562	11.9%
160+00	563,642	474,225	37,576	31,615	17.2%
180+00	517,701	491,225	34,513	32,748	5.2%
200+00	513,723	494,295	34,248	32,953	3.9%
220+00	547,984	508,160	36,532	33,877	7.5%
240+00	571,783	545,843	38,119	36,390	4.6%
260+00	519,404	491,836	34,627	32,789	5.5%
280+00	519,448	473,799	34,630	31,587	9.2%
360+00	637,179	667,313	42,479	44,488	4.6%
380+00	633,093	649,997	42,206	43,333	2.6%
400+00	681,567	668,595	45,438	44,573	1.9%
				Average	8.6

 Table 11: Cross Section Comparison between 2007 and 2010 Bathymetry

Cross	Area Without Correction		Correct		
Section	2007	2012	True 2007	True 2012	Percent
Station	Survey	Survey	Survey	Survey	Difference
Station	(feet ²)	(feet ²)	(feet ²)	(feet ²)	
40+00	623,707	673,201	41,580	44,880	7.6%
60+00	616,407	705,123	41,094	47,008	13.4%
80+00	677,425	717,098	45,162	47,807	5.7%
100+00	732,863	809,092	48,858	53,939	9.9%
120+00	632,241	651,182	42,149	43,412	3.0%
140+00	702,288	654,808	46,819	43,654	7.0%
160+00	563,642	570,900	37,576	38,060	1.3%
180+00	517,701	571,943	34,513	38,130	10.0%
200+00	513,723	567,785	34,248	37,852	10.0%
220+00	547,984	564,749	36,532	37,650	3.0%
240+00	571,783	527,643	38,119	35,176	8.0%
260+00	519,404	501,700	34,627	33,447	3.5%
280+00	519,448	502,045	34,630	33,470	3.4%
360+00	637,179	570,757	42,479	38,050	11.0%
380+00	633,093	597,286	42,206	39,819	5.8%
400+00	681,567	644,669	45,438	42,978	5.6%
				Average	6.8

 Table 12: Cross Section Comparison between 2007 and 2012 Bathymetry

Cross	Area Without Correction		Correct		
Section	2010	2012	True 2010	True 2012	Percent
Station	Survey	Survey	Survey	Survey	Difference
Station	(feet ²)	(feet ²)	(feet ²)	(feet ²)	
40+00	698,522	673,201	46,568	44,880	3.7%
60+00	704,917	705,123	46,994	47,008	0.0%
80+00	757,907	717,098	50,527	47,807	5.5%
100+00	880,713	809,092	58,714	53,939	8.5%
120+00	690,397	651,182	46,026	43,412	5.8%
140+00	623,423	654808	41,562	43,654	4.9%
160+00	474,225	570,900	31,615	38,060	18.5%
180+00	491,225	571,943	32,748	38,130	15.2%
200+00	494,295	567,785	32,953	37,852	13.8%
220+00	508,160	564,749	33,877	37,650	10.5%
240+00	545,843	527,643	36,390	35,176	3.4%
260+00	491,836	501,700	32,789	33,447	2.0%
280+00	473,799	502,045	31,587	33,470	5.8%
360+00	667,313	570,757	44,488	38,050	15.6%
380+00	649,997	597,286	43,333	39,819	8.5%
400+00	668,595	644,669	44,573	42,978	3.6%
				Average	7.8

 Table 13: Cross Section Comparison between 2010 and 2012 Bathymetry

Table 14: Average Percent Difference Between Model Replication and PrototypeSurveys

Model Replication	Model Replication	Model Replication	Average Percent
& 2007 Survey	& 2010 Survey	& 2012 Survey	Difference
5.70	13.30	8.40	9.20

Table 15: Average Percent Difference Between Prototype Surveys

2007 Survey &	2007 Survey &	2010 Survey &	Average Percent
2010 Survey	2012 Survey	2012 Survey	Difference
8.60	6.80	7.80	7.70

4. <u>HSR Modeling Theory</u>

The principle behind the use of a hydraulic sediment response model is similitude, the linking of parameters between a model and prototype so that behavior in one can predict behavior in the other.

There are two different types of similitude; mathematical similitude and empirical similitude. Mathematical similitude is founded on the scale relationship between all linear dimensions (geometric similarity), a scale relationship between all components of velocity (kinematic), or both geometric and kinematic similarity with the ratio of all common point forces equal (dynamic similarity).

In contrast to mathematical similitude, empirical similitude is based on the belief that the laws of mathematical similitude can be relaxed as long as other more fundamental relationships are preserved between the model and the prototype. All physical models used in the past by USACE employed, to some degree, empirical similitude. Numerous definitions of what relationships must be preserved have been put forward concerning physical sediment models. These relationships often deal with the scalability of elements of sediment transport processes or surface or structure roughness. Hydraulic sediment response models depend on similitude in the morphologic response, i.e. the ability of the model to replicate known prototype parameters associated with the bed response in the river under study. Bed response includes thalweg location, scour and deposition within the channel and at various river structures, and the overall resultant bed configuration. These parameters are directly compared to what is observed from prototype surveys.

Detailed cross-sectional analysis of prototype and model surveys defining bed response and bed configuration have shown that HSR model variation from the prototype is often approximately that of the natural variation observed in the prototype. This correspondence allows hydraulic engineers to use the HSR model with confidence and introduce alternatives in the model to approximate the bed response that can be expected to occur in the prototype.

HSR models were developed from empirical large scale coal bed models utilized by the USACE Waterways Experiment Station (Environmental Research and Development Center). These models were used by MVS from 1940 to the mid 1990s. For a more thorough explanation of the HSR model development, please refer to the following link: http://www.wes.army.mil/Welcome.html

5. Flow Visualization Results

Flow visualization is a tool used to monitor the flow patterns in an HSR model. The preferred method at the Applied River Engineering Center is to dye the water and seed the water surface with dry white sediment (Poly-Urea grit) at the model entrance. The dry sediment floats on the top of the water surface and provides a visual representation of surface flow patterns in the model. A high definition video camera is used to record approximately 60 seconds of the sediment floating through the study area. The recording is processed with software that reduces the recording to approximately 20% of the original speed. The video speed reduction allows viewers to more easily track the flow patterns.

The first condition recorded was the replication test, or existing conditions as seen in Figure 4 below.

(Please note that there is a DVD available with this report to view the video). (Please note that there is a DVD available with this report in order to view the described videos. Furthermore, Youtube hyperlinks will be provided in the online version of the report. To access the Youtube videos simply click on the still image of the video, and it will direct you to the associated Youtube video.)

The flow exited a bend at RM 122.00 and about to cross over to the RDB just upstream of Figure 4's extents. As seen in the snapshot of the existing conditions, the resultant flow was concentrated along the LDB in Figure 4. Immediately downstream, flow crossed over to the RDB and began to disperse across the channel. No sediment movement as observed in the side channels. All structures are highlighted in pink for increased visibility.

Figure 4: Flow Visualization

The next condition recorded was post construction with the recommended alternative (Alternative 29) for constructing rootless dike extensions and shortened dikes that would create a secondary channel and provide habitat diversity adjacent to Moro Island.

Again, the flow exited a bend at RM 122.00 and about to cross over to the RDB just upstream of Figure 4's extents. As seen in the snapshot of the post construction conditions, the flow split sending the majority of the flow through the main channel. A secondary side channel was created between the notch structures. Compared to the existing conditions, there was increased flow and sediment transport along the LDB.